The attention of researchers is burgeoning toward oilseed press-cake valorization for its high protein content. Protein removal from oil-cakes generates large quantities of fibrous residue (oil-and-protein spent meal) as a byproduct, which currently has very limited practical utility. In the wake of increasing awareness in waste recycling, a simple environmentally benign hydrothermal carbonization process to convert this "end-of-pipe" waste (spent meal) into antioxidative, hemocompatible, fluorescent carbonaceous nanoparticles (FCDs) has been described. In the present investigation, an interesting application of FCDs in fabricating low-cost rapeseed protein-based fluorescent film, with improved antioxidant potential (17.5-19.3-fold) and thermal stability has been demonstrated. The nanocomposite film could also be used as forgery-proof packaging due to its photoluminescence property. For assessing the feasibility of antioxidative FCDs in real food systems, a comparative investigation was further undertaken to examine the effect of such nanocarbon-loaded composite film on the oxidative shelf life of rapeseed oil. Oil samples packed in nanocomposite film sachets showed significant delay in oxidative rancidity compared to those packed in pristine protein-film sachet (free fatty acids, peroxide value, and thiobarbituric acid-reactive substances reduced up to 1.4-, 2-, and 1.2-fold, respectively). The work presents a new concept of biobased fluorescent packaging and avenues for harnessing this potent waste.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf500138f | DOI Listing |
Biomater Sci
December 2024
Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India.
Wound healing is a dynamic, multi-phase process that includes haemostasis, tissue regeneration, cellular proliferation, and matrix modification. Traditional wound care procedures frequently encounter complications such as delayed healing and infection, demanding new therapeutic approaches. In this context, nanomaterial-based devices provide considerable benefits due to their capacity to improve medication delivery and tissue healing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.
Delivery of secretomes, which includes growth factors, cytokines, and mRNA, is critical in regenerative medicine for cell-to-cell communication. However, the harsh in vivo environment presents significant challenges for secretome delivery. Proteolytic enzymes shorten secretomes' half-lives, and secretomes tend to rapidly diffuse at defect sites.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Pervomayskaya st. 48, Syktyvkar 167000, Komi Republic, Russian Federation. Electronic address:
The study is dedicated to the synthesis, rheological properties, hemocompatibility, and further modification of water-soluble derivatives of sodium alginate containing fragments of ethylenediamine (Alg-EDA). Alg-EDA with an equal ratio of amide/amine groups and varying degrees of substitution were synthesized by the carbodiimide method. The influence of the molecular weight of Alg-EDA on the attachment of bioactive molecules such as hydroxybenzoic and ferulic acids was determined.
View Article and Find Full Text PDFSoft Matter
December 2024
Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
Cells
October 2024
Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy.
Plant-derived nanovesicles represent a novel approach in the field of plant-derived biomaterials, offering a sustainable and biocompatible option for various biomedical applications. The unique properties of these vesicles, such as their ability to encapsulate bioactive compounds, make them suitable for therapeutic, cosmetic, and nutraceutical purposes. In this study, we have, for the first time, successfully bio-fabricated vesicles derived from Opuntia ficus-indica (FicoVes) using an efficient and cost-effective method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!