Photodynamic therapy of ovarian cancer peritoneal metastasis with hexaminolevulinate: a toxicity study.

Photodiagnosis Photodyn Ther

INSERM U703, Univ Lille Nord de France, Lille University Hospital, Lille, France; GDR 3049 Médicaments Photoactivables - Photochimiothérapie (PHOTOMED), France. Electronic address:

Published: September 2014

Context: While photodynamic therapy (PDT) is a promising treatment for peritoneal carcinomatosis, its use is often limited because of the toxicity of photosensitizers. In this study, safety of PDT with hexaminoevulinate (HAL), a second generation photosensitizer, is assessed.

Methods: PDT of the peritoneal cavity was performed in a rat model of peritoneal carcinomatosis. Rats were treated according to different protocols: with full or half HAL dose, after intraperitoneal or oral administration of HAL, 4 or 8h after its injection, using red or green light, after protection of the liver or cooling of the abdominal wall. Toxicity was assessed by blood tests quantifying hematocrit, liver and muscular enzymes and by pathological examination of abdominal and intrathoracic organs after treatment. The results were analyzed in the light of quantification of fluorescence and protoporphyrin IX (PPIX) content of the same organs.

Results: PDT with HAL induced rhabdomyolysis, intestinal necrosis and liver function test anomalies, leading to death in 2 out of 34 rats. The liver and the intestine contained high levels of PPIX (3-5 times more than tumor nodules).

Conclusion: HAL PDT lacked specificity. However, the strategy associating diagnosis, treatment and evaluation of the results in one single procedure was effective and should be tested with other photosensitizers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2014.04.006DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
peritoneal carcinomatosis
8
pdt
5
hal
5
therapy ovarian
4
ovarian cancer
4
peritoneal
4
cancer peritoneal
4
peritoneal metastasis
4
metastasis hexaminolevulinate
4

Similar Publications

Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications.

View Article and Find Full Text PDF

Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.

View Article and Find Full Text PDF

Gold nanorods coated with self-assembled silk fibroin for improving their biocompatibility and facilitating targeted photothermal-photodynamic cancer therapy.

Nanoscale

January 2025

Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China.

Gold nanorods (AuNRs) have shown great potential as photothermal agents for cancer therapy. However, the biosafety of AuNRs ordinarily synthesized using a cationic ligand assistance procedure has always been a subject of controversy, which limits their application in tumor therapy. In this study, we propose a novel strategy to enhance the biocompatibility of AuNRs by constructing a biological coating derived from silk fibroin (SF) on their surface.

View Article and Find Full Text PDF

NIR-II photo-accelerated polymer nanoparticles boost tumor immunotherapy via PD-L1 silencing and immunogenic cell death.

Bioact Mater

April 2025

School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Immune checkpoint blockade (ICB) therapy is a widely favored anti-tumor treatment, but it shows limited response to non-immunogenic "cold" tumors and suffers from drug resistance. Photodynamic therapy (PDT), as a powerful localized treatment approach, can convert a "cold tumor" into a "hot tumor" by inducing immunogenic cell death (ICD) in tumor cells, thereby enhancing tumor immunogenicity and promoting tumor immunotherapy. However, the effectiveness of PDT is largely hindered by the limited penetration depth into tumor tissues.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a promising noninvasive tumor treatment modality that relies on generating reactive oxygen species (ROS) and requires an adequate oxygen supply to the target tissue. However, hypoxia is a common feature of solid tumors and profoundly restricts the anti-tumor efficacy of PDT. In recent years, scholars have focused on exploring nanomaterial-based strategies for oxygen supplementation and integrating non-oxygen-consuming treatment approaches to overcome the hypoxic limitations of PDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!