This Letter presents the evaluation and demonstration of an optical free-space (FS) multicasting system for multi-Gigabits-per-second (multi-Gbps) indoor transmission. These simultaneous line-of-sight links are formed by infrared beams and are beam-steered using a passive diffraction grating. The experiment has resulted in error-free links (bit error rate <10(-9) at 2.5 Gbps on-off keying) and is scalable to support higher data rates. This system is proposed for short-range optical wireless communication and can be seamlessly integrated in in-building fiber networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.39.002622 | DOI Listing |
We report a novel optical wireless communication (OWC) system solution that supports multi-Gbps (Gigabit-per-second) capacity for indoors. Narrow beams, termed as pencil beams, are directed to wireless users using a tunable laser and a passive diffractive optical element. This enables a wide coverage of ultra-high-capacity communication links to serve multiple network users simultaneously.
View Article and Find Full Text PDFThis Letter presents the evaluation and demonstration of an optical free-space (FS) multicasting system for multi-Gigabits-per-second (multi-Gbps) indoor transmission. These simultaneous line-of-sight links are formed by infrared beams and are beam-steered using a passive diffraction grating. The experiment has resulted in error-free links (bit error rate <10(-9) at 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!