Introduction: According to developed countries' studies, in breast cancer survivors there is a high prevalence of metabolic syndrome; however, in Mexico data is lacking about this issue.
Goal: To explore if metabolic syndrome occurs in Mexican women survivors of breast cancer.
Material And Methods: At a second-level general hospital, women with breast cancer with a surviving > 2 years were studied. The analysis involved their demographic and anthropometric features, blood pressure measurement, time of surviving, besides fasting blood levels of lipids and glucose.
Results: The sample consisted of 100 women; 42% were obese (body mass index > or = 30 kg/m2). The sample's mean age was 60 years with a mean surviving time of 6.5 years. Their mean glucose level was 122 mg/dL and triglycerides 202 mg/dL. There were 33% with blood pressure > or = 130/85mm Hg or diagnosis of hypertension. Fifty-seven percent had glucose > 99 mg/dL or diagnosis of diabetes mellitus, and 58% had triglycerides > 149 mg/dL. Metabolic syndrome occurred in 57% of obese women.
Conclusion: Our results suggest that metabolic syndrome occurs in more than 50% of obese Mexican women survivors of breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272473 | PMC |
http://dx.doi.org/10.5455/medarh.2014.68.19-21 | DOI Listing |
Diabetes Obes Metab
January 2025
Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China.
Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.
View Article and Find Full Text PDFJGH Open
January 2025
Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine Tokyo Japan.
Background And Aim: It is important for endoscopist to diagnose the lesion redness. In this study, we focused on the redness of duodenal bulb. We objectively analyzed the changes in redness of the duodenal bulb using linked color imaging (LCI) with chromatic indicators.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!