Aluminum and its potential contribution to Alzheimer's disease (AD).

Front Aging Neurosci

LSU Neuroscience Center, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, Louisiana State University New Orleans, LA, USA ; Department of Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA.

Published: April 2014

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986683PMC
http://dx.doi.org/10.3389/fnagi.2014.00062DOI Listing

Publication Analysis

Top Keywords

aluminum potential
4
potential contribution
4
contribution alzheimer's
4
alzheimer's disease
4
aluminum
1
contribution
1
alzheimer's
1
disease
1

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Ibadan, Ibadan, Oyo, Nigeria.

Background: The brain is a potential target for aluminium toxicity as it induces oxidative stress, strategies, rich in polyphenolic compound, containing flavonoid and possessing antioxidant property, found in natural plant products, to attenuate aluminium-induced impairments could provide a potential therapeutic intervention and protection for aluminium neurotoxicity.

Method: Forty adult rats weighing between 160 - 165g was used. The rats were divided into four groups (n = 10).

View Article and Find Full Text PDF

In this paper, we propose and theoretically investigate a novel multimode refractive index (MMRI) plasmonic optical sensor for detecting various brain cancer cells, leveraging the unique capabilities of split ring resonators (SRRs). The sensor, simulated using the finite-difference time-domain (FDTD) method, exhibits dual resonance modes in its reflection spectrum within the 1500 nm to 3500 nm wavelength range, marking a significant advancement in multimode plasmonic biosensing. Through detailed parametric analysis, we optimize critical dimensional parameters to achieve superior performance.

View Article and Find Full Text PDF

The increasingly concerning issue of water pollution caused by untreated leachate necessitates the implementation of effective wastewater treatment methods. This study addresses the crucial issue of landfill leachate treatment through an innovative and environmentally friendly approach that integrates electrolysis with palm-shell activated carbon contactors. The efficacy of an integrated process for pollutants removal was assessed involving electrolysis with aluminum and iron electrodes, activated carbon contactors with varying bed depths, and the influence of salinity.

View Article and Find Full Text PDF

This study examines the effect of ultrathin aluminum oxide (AlO) passivation layer on the performance of the kesterite CuZnSnS (CZTS) solar cells. The AlO layer was applied at the back CZTS/Mo interface using atomic layer deposition (ALD). Our findings indicate that the interface passivation with AlO can significantly enhance the adhesion of CZTS to Mo, preventing delamination during annealing.

View Article and Find Full Text PDF

Metal-free AAO membranes function as both filters and Raman enhancers for the analysis of nanoplastics.

Water Res

December 2024

Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea; NanoRaman Analysis Corp., 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. Electronic address:

Nanoplastics (NPs) are growing concerns for health and the environment, being widely distributed across marine, freshwater, air, and biological systems. Analyzing NPs in real environmental samples requires pretreatment, which has traditionally been complex and often leads to underestimation in actual samples, creating a gap between real-world conditions and research findings. In this study, we propose using anodic aluminum oxide (AAO) membrane as a direct Raman substrate for particles on a filter, achieving complete recovery during separation and concentration while simplifying the pretreatment stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!