Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988362PMC
http://dx.doi.org/10.3389/fncom.2014.00040DOI Listing

Publication Analysis

Top Keywords

artificial neural
4
neural networks
4
networks powerful
4
powerful tools
4
tools modeling
4
modeling chaotic
4
chaotic behavior
4
behavior nervous
4
nervous system
4
artificial
1

Similar Publications

The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.

View Article and Find Full Text PDF

Inverse design of promising electrocatalysts for CO reduction via generative models and bird swarm algorithm.

Nat Commun

January 2025

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 21189, China.

Directly generating material structures with optimal properties is a long-standing goal in material design. Traditional generative models often struggle to efficiently explore the global chemical space, limiting their utility to localized space. Here, we present a framework named Material Generation with Efficient Global Chemical Space Search (MAGECS) that addresses this challenge by integrating the bird swarm algorithm and supervised graph neural networks, enabling effective navigation of generative models in the immense chemical space towards materials with target properties.

View Article and Find Full Text PDF

Enhancing cardiovascular disease classification in ECG spectrograms by using multi-branch CNN.

Comput Biol Med

January 2025

Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India. Electronic address:

Cardiovascular disease (CVD) is caused by the abnormal functioning of the heart which results in a high mortality rate across the globe. The accurate and early prediction of various CVDs from the electrocardiogram (ECG) is vital for the prevention of deaths caused by CVD. Artificial intelligence (AI) is used to categorize and accurately predict various CVDs.

View Article and Find Full Text PDF

The feasibility of using machine learning to predict COVID-19 cases.

Int J Med Inform

January 2025

School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:

Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.

View Article and Find Full Text PDF

Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.

Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!