Aim: To explore mitochondrial dysfunction in nonalcoholic steatohepatitis (NASH) by analyzing the proteome of liver mitochondria from a NASH model.
Methods: The NASH rat model was established by feeding rats a fat-rich diet for 24 wk and was confirmed using hematoxylin and eosin staining of liver tissue and by changes in the levels of serum alanine transaminase, aspartate aminotransferase, triglyceride, total cholesterol and other markers. Liver mitochondria from each group were isolated using differential centrifugation. The mitochondrial samples were lyzed, purified and further analyzed using two-dimensional electrophoresis combined with matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Bioinformatic analyses of assigned gene ontology and biological pathway was used to study functional enrichments in the abundant proteomic data.
Results: Eight up-regulated and sixteen down-regulated proteins were identified that showed greater than 1.5-fold differences between the controls and the NASH group. These dysregulated proteins were predicted to be involved in different metabolic processes including fatty acid β-oxidation processes, lipid metabolic processes, cell-cycle arrest, cell polarity maintenance, and adenosine triphosphate/sex hormone metabolic processes. Novel proteins that may be involved in NASH pathogenesis including the trifunctional enzyme Hadha, thyroxine, prohibitin, aldehyde dehydrogenase ALDH1L2, UDP-glucuronosyltransferase 2B31, and carbamoyl-phosphate synthase were identified using bioinformatics tools. The decreased expression of Hadha in NASH liver was verified by Western blotting, which was used as a complementary technique to confirm the proteomic results.
Conclusion: This novel report on the liver mitochondrial proteome of a NASH model may provide a reservoir of information on the pathogenesis and treatment of NASH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000516 | PMC |
http://dx.doi.org/10.3748/wjg.v20.i16.4778 | DOI Listing |
Biol Reprod
January 2025
Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
Unlike differentiated somatic cells, which possess elongated mitochondria, undifferentiated cells, such as those of preimplantation embryos, possess round, immature mitochondria. Mitochondrial morphology changes dynamically during cell differentiation in a process called mitochondrial maturation. The significance of the alignment between cell differentiation and mitochondrial maturity in preimplantation development remains unclear.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA.
Extensive research has demonstrated endurance exercise to be neuroprotective. Whether these neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. To investigate the role of hepatic ketone production on brain health during exercise, healthy 6-month-old female rats underwent viral knockdown of the rate-limiting enzyme in the liver that catalyses the first reaction in ketogenesis: 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2).
View Article and Find Full Text PDFActa Biomater
January 2025
Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China. Electronic address:
Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disorder with severe complications. Mitochondrial dysfunction due to over-opening of the mitochondrial permeability transition pore (mPTP) in liver cells plays a central role in the development and progression of NAFLD. Restoring mitochondrial function is a promising strategy for NAFLD therapy.
View Article and Find Full Text PDFHepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.
View Article and Find Full Text PDFItaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized via tricarboxylic acid (TCA) metabolism downstream of TLR signaling. Itaconate-based treatment strategies are being explored to mitigate numerous inflammatory conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!