Aim: To investigate the relationship between neuronal nitric oxide synthase (nNOS) expression and the natriuretic peptide signaling pathway in the gastric fundus of streptozotocin (STZ)-induced diabetic mice.
Methods: Diabetic mice were induced by injection of STZ solution. Immunofluorescence labeling of HuC/D, nNOS and natriuretic peptide receptor-A, B, C (NPRs) in the gastric fundus (GF) was used to observe nNOS expression and whether NPRs exist on enteric neurons. The expression levels of nNOS and NPRs in the diabetic GF were examined by western blotting. An isometric force transducer recorded the electric field stimulation (EFS)-induced relaxation and contraction in the diabetic GF. An intracellular recording method assessed EFS-induced inhibitory junction potentials (IJP) on the GF. GF smooth muscles acquired from normal mice were incubated with different concentrations of the NPRs agonist C-type natriuretic peptide (CNP) for 24 h, after which their nNOS expressions were detected by western blotting.
Results: Eight weeks after injection, 43 diabetic mice were obtained from mouse models injected with STZ. Immunofluorescence indicated that the number of NOS neurons was significantly decreased and that nNOS expression was significantly downregulated in the diabetic GF. The results of physiological and electrophysiological assays showed that the EFS-induced relaxation that mainly caused by NO was significantly reduced, while the contraction was enhanced in the diabetic GF. EFS-induced IJP showed that L-NAME sensitive IJP in the diabetic GF was significantly reduced compared with control mice. However, both NPR-A and NPR-B were detected on enteric neurons, and their expression levels were upregulated in the diabetic GF. The nNOS expression level was downregulated dose-dependently in GF smooth muscle tissues exposed to CNP.
Conclusion: These findings suggested that upregulation of the NPs signaling pathway may be involved in GF neuropathy caused by diabetes by decreasing nNOS expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000499 | PMC |
http://dx.doi.org/10.3748/wjg.v20.i16.4626 | DOI Listing |
Neurobiol Dis
December 2024
Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy.
Phosphodiesterase 2 A (PDE2A) function is stimulated by cGMP to catabolize cAMP. However, neurological and neurochemical effects of PDE2A deficiency are poorly understood. To address this gap, we studied behavioral characteristics and cerebral morpho-chemical changes of adult male heterozygous C57BL/6-PDE2A+/- (HET), and wild type C57BL/6-PDE2A+/+ (WT) mice.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Biomedical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan.
Morphine belongs to the class of opioids and is known for its potential to cause dependence and addiction, particularly with prolonged use. Due to the associated risks, caution must be taken when prescribing and limiting its clinical use. Overexpression of N-methyl-D-aspartate (NMDA) receptors, nitric oxide and cGMP pathway has been implicated in exacerbate the development of morphine dependence and withdrawal.
View Article and Find Full Text PDFLife Sci
December 2024
Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Aims: Hyperammonaemia (HA) is a metabolic disorder characterized by increased ammonia levels in the blood and is associated with severe neurological impairments. Some previous findings have shown the involvement of the nitric oxide pathway in HA-induced neurological impairments. The current study explored the impact of tadalafil on neurological impairments induced by HA in a zebrafish larval model due to its reported indirect interactions with the nitric oxide pathway.
View Article and Find Full Text PDFJ Sex Med
December 2024
The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
Background: Preservation of erectogenic nerves during radical prostatectomy (RP) is hampered by limited understanding of their precise localization, due to their complex, intertwined paths, and the inherent individual variations across patients. Because erection utilizes a subset of cavernous nerves (CNs) that in response to sexual stimuli reveal phosphorylation of neuronal nitric oxide synthase (nNOS) on its stimulatory site Ser-1412, we hypothesized that delineation of nerves containing phosphorylated (P)-nNOS on Ser-1412 would establish the location of functional erectogenic nerves within the periprostatic region.
Aim: To identify the distribution and quantity of functional erection-relevant ([P-nNOS]-containing) nerves in the periprostatic area and discriminate them among the CNs distribution.
Cell Biochem Funct
December 2024
Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
The present investigation assesses ursodeoxycholic acid's efficacy (UDCA) as an ACE2 activator against gamma irradiation through activating the renin-angiotensin system's (RAS) beneficial axis, ACE2/Ang-(1-7)/Mas1 via its profitable influence on inflammation, oxidative stress, and neuronal damage caused by irradiation (IRR). Four groups of rats were treated as follows: control group, group receiving UDCA (100 mg/kg/day) for 14 days by gavage, group irradiated at 6 Gy, and group receiving UDCA post-irradiation for 14 days. The results revealed that gamma-irradiation (6 Gy) caused a substantial drop in the cerebral ACE2/Ang-(1-7)/Mas1 axis and remarkably increased the expression of cerebral inflammatory mediators: tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6) and interleukin-1β (IL-1β) combined with significant elevation in cyclooxygenase-II (COX-II), (NADPH) oxidases (NOX4), lipooxygenase (LOX) activities and nitric oxide (NO) content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!