A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electromechanical method coupling non-invasive skin impedance probing and in vivo subcutaneous liquid microinjection: controlling the diffusion pattern of nanoparticles within living soft tissues. | LitMetric

Transdermal drug delivery is the way to transport drug carriers, such as nanoparticles, across the skin barrier to the dermal and/or subcutaneous layer. In order to control the transdermal drug delivery process, based on the heterogeneous and nonlinear structures of the skin tissues, we developed a novel electromechanical method combining in vivo local skin impedance probing, subcutaneous micro-injection of colloidal nanoparticles, and transcutaneous electrical stimulation. Experiments on the nude mice using in vivo fluorescence imaging exhibited significantly different apparent diffusion patterns of the nanoparticles depending on the skin impedance: Anisotropic and isotropic patterns were observed upon injection into low and high impedance points, respectively. This result implies that the physical complexity in living tissues may cause anisotropic diffusion of drug carriers, and can be used as a parameter for controlling drug delivery process. This method also can be combined with microneedle-based drug release systems, micro-fabricated needle-electrodes, and/or advanced in vivo targeting/imaging technologies using nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-014-9867-zDOI Listing

Publication Analysis

Top Keywords

skin impedance
12
drug delivery
12
electromechanical method
8
impedance probing
8
transdermal drug
8
drug carriers
8
delivery process
8
drug
6
skin
5
nanoparticles
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!