A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108546 | PMC |
http://dx.doi.org/10.1007/s13361-014-0901-4 | DOI Listing |
Rapid Commun Mass Spectrom
March 2025
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
Rationale: In electrospray ionization and atmospheric pressure chemical ionization, the protonation site directly guides the ion's dissociation. But what if the site of protonation is ambiguous? In this study, we explored the unimolecular reactions of protonated α- and β-pinene ions with a combination of tandem mass spectrometry and theory. Each has multiple potential protonation sites that influence their chemistry.
View Article and Find Full Text PDFMethods Protoc
December 2024
Univ Brest, CEMCA, CNRS, UMR 6521, 29238 Brest, France.
Cyclic peptides have higher stability and better properties as therapeutic agents than their linear peptide analogues. Consequently, intramolecular click chemistry is becoming an increasingly popular method for the synthesis of cyclic peptides from their isomeric linear peptides. However, assessing the purity of these cyclic peptides by mass spectrometry is a significant challenge, as the linear and cyclic peptides have identical masses.
View Article and Find Full Text PDFChem Res Toxicol
December 2024
Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.
The algal macrolide goniodomin A (GDA) undergoes ring-cleavage under unusually mild, alkaline conditions to form mixtures of stereoisomers of seco acids GDA-sa and iso-GDA-sa. In the primary fragmentation pathway, opening of the macrolide ring occurs by displacement of the carboxyl group by a base-catalyzed attack of the C32 hemiketal hydroxy group on C31, yielding an oxirane-carboxylic acid, named goniodomic acid. The oxirane ring is unstable, undergoing solvolytic opening to form mainly GDA-sa.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China.
Tandem mass spectrometry (MS) is one of the most effective methods to obtain the structures of organic molecules, enabling the observation of multigenerational ion fragments. Collision-induced dissociation (CID) is currently the most mature technique for mass spectrometry analysis. Ion trap mass spectrometry (ITMS) is favored for on-site detection field, due to its ability of MS analysis with a single trap and its small size.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States.
We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA--K, KAAA--K, and HAAA--K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!