Mechanical behavior of abdominal aorta aneurysm in rat model treated by cell therapy using mesenchymal stem cells.

Biomech Model Mechanobiol

CNRS EAC 4396, Université Paris-Est Créteil, Faculté de Médecine - Centre de Recherches Chirurgicales, 8 rue du Général, Sarrail, 94010 , Créteil, France,

Published: January 2015

Regenerative medicine to substitute conventional surgery or an endovascular stent constitutes currently a challenge to treat abdominal aneurysm artery (AAA). The present paper addresses the following question: Can a cellular therapy from mesenchymal stem cells reestablish the mechanical properties of damaged abdominal aorta? For that, the xenograft rat model that mimics arterial dilatation due to aneurysmal disease is used to study the effects of the proposed cellular therapy. To investigate the changes in the mechanical behavior of the arterial wall, the artery is assumed to be made of a hyperelastic and incompressible material characterized by a strain energy function fitted to the average data set of uniaxial tests of AAA tissue samples. In order to compute the stresses in the artery by using an analytical approach, the aneurysm is represented as a "parabolic-exponential" thin membrane. Thus, when compared to healthy, untreated and treated arteries, the obtained results demonstrate that the cellular therapy stabilizes the geometry of AAAs, improves the stiffness of the tissue and decreases stress variations in the arterial wall.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-014-0586-4DOI Listing

Publication Analysis

Top Keywords

cellular therapy
12
mechanical behavior
8
rat model
8
therapy mesenchymal
8
mesenchymal stem
8
stem cells
8
arterial wall
8
behavior abdominal
4
abdominal aorta
4
aorta aneurysm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!