Age of collagen in intracranial saccular aneurysms.

Stroke

From the Department of Neurosurgery (N.E., K.B., H.-J.S., D.H.) and Institute of Forensic Medicine (C.M.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Physiological Chemistry and Pathobiochemistry, Westfalian Wilhelms-University, Münster, Germany (R.D., P.B.); Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, CA (B.A.B.); Department of Epidemiology, University of Iowa (J.C.T.); Department of Neurology, Mayo Clinic, Rochester, MN (R.D.B.); Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada (R.L.M.); and Department of Surgery, University of Toronto, Toronto, Ontario, Canada (R.L.M.).

Published: June 2014

Background And Purpose: The chronological development and natural history of cerebral aneurysms (CAs) remain incompletely understood. We used (14)C birth dating of a main constituent of CAs, that is, collagen type I, as an indicator for biosynthesis and turnover of collagen in CAs in relation to human cerebral arteries to investigate this further.

Methods: Forty-six ruptured and unruptured CA samples from 43 patients and 10 cadaveric human cerebral arteries were obtained. The age of collagen, extracted and purified from excised CAs, was estimated using (14)C birth dating and correlated with CA and patient characteristics, including the history of risk factors associated with atherosclerosis and potentially aneurysm growth and rupture.

Results: Nearly all CA samples contained collagen type I, which was <5 years old, irrespective of patient age, aneurysm size, morphology, or rupture status. However, CAs from patients with a history of risk factors (smoking or hypertension) contained significantly younger collagen than CAs from patients with no risk factors (mean, 1.6±1.2 versus 3.9±3.3 years, respectively; P=0.012). CAs and cerebral arteries did not share a dominant structural protein, such as collagen type I, which would allow comparison of their collagen turnover.

Conclusions: The abundant amount of relatively young collagen type I in CAs suggests that there is an ongoing collagen remodeling in aneurysms, which is significantly more rapid in patients with risk factors. These findings challenge the concept that CAs are present for decades and that they undergo only sporadic episodes of structural change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380291PMC
http://dx.doi.org/10.1161/STROKEAHA.114.005461DOI Listing

Publication Analysis

Top Keywords

age collagen
8
14c birth
8
birth dating
8
collagen type
8
human cerebral
8
cerebral arteries
8
collagen intracranial
4
intracranial saccular
4
saccular aneurysms
4
aneurysms background
4

Similar Publications

Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of skeletal muscle, with phenotypic differences reflecting variations in cellular composition and transcriptional profiles.

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

The pathophysiology of rotator cuff disease is complex, involving intrinsic and extrinsic factors that contribute to mechanical alterations, inflammation, apoptosis, and neovascularization. These changes result in structural and cellular disruptions, including inflammatory cell infiltration and collagen disorganization. Macrophages have recently gained attention as critical mediators of tissue repair and regeneration.

View Article and Find Full Text PDF

Aim: To study the relationship between laboratory markers and echocardiography (EchoCG) parameters in heart failure with preserved ejection fraction (HFpEF) depending on the results of the diastolic stress test (DST).

Material And Methods: The diagnostic algorithm provided by the current guidelines for the assessment of left ventricular (LV) diastolic function was used to select patients. If there were not enough criteria to make a conclusion about increased LV filling pressure (FP) based on standard resting echocardiography data in patients with arterial hypertension and ischemic heart disease, DST was performed to detect HFpEF.

View Article and Find Full Text PDF

Alzheimer's Imaging Consortium.

Alzheimers Dement

December 2024

Amsterdam UMC, location VUmc, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam, Netherlands.

Background: Recent studies highlight distinct patterns of cortical atrophy between amnestic (typical) and non-amnestic (atypical, with subtypes: behavioural, dysexecutive, logopenic and visuospatial) clinical phenotypes of Alzheimer's disease (AD). The current study aimed to assess regional MRI patterns of cortical atrophy across AD phenotypes, and their association with amyloid-beta (Aß), phosphorylated tau (pTau), axonal degeneration (NfL) and microvascular deterioration (COLIV).

Method: Postmortem In-situ 3DT1 3T-MRI data was collected for 33 AD (17 typical, 16 atypical) and 16 control brain donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!