Surgical flow augmentation for treatment of cerebral hemodynamic impairment remains controversial. Here, we investigated the benefit of endothelial progenitor cell (EPC) treatment in a rat model of chronic cerebral hypoperfusion. At repeated time points after 3-vessel occlusion (3-VO), animals were treated with 1 × 10(6) DiI-labeled (a) ex vivo-expanded embryonic-EPC (e-EPC), (b) cyclic AMP-differentiated embryonic-endothelial progenitor-derived cells (e-EPDC as biologic control) or, (c) saline. The cerebrovascular reserve capacity (CVRC) was assessed immediately before and on days 7 and 21 after 3-VO. Structural effects were assessed by latex perfusion, immunohistochemistry, and intravital fluorescence video microscopy on day 21. Three-vessel occlusion resulted in a significant impairment of the CVRC with better functional recovery after treatment with e-EPC (16.4±8%) compared with e-EPDC (3.7±8%) or saline (6.4±9%) by day 21 (P<0.05), which was paralleled by a significant increase in the vessel diameters of the anterior Circle of Willis, a significantly higher number of leptomeningeal anastomoses and higher parenchymal capillary density in e-EPC-treated animals. Interestingly, despite in vivo interaction of e-EPC with the cerebral endothelium, e-EPC incorporation into the cerebral vasculature was not observed. Our results suggest that EPC may serve as a novel therapeutic agent in clinical trials for nonsurgical treatment of chronic cerebral hemodynamic impairment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126089 | PMC |
http://dx.doi.org/10.1038/jcbfm.2014.78 | DOI Listing |
Globally, there are 15 million stroke patients each year who have significant neurological deficits. Today, there are no treatments that directly address these deficits. With demographics shifting to an older population, the problem is worsening.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
Purpose: Progenitors for the corneal endothelium have been identified in the transition zone (TZ), but their cellular interactions remain undefined. Posterior limbal mesenchymal stromal cells (P-LMSCs) may support TZ cells in the posterior limbus. This study aims to characterize P-LMSCs and investigate their effects on TZ cells.
View Article and Find Full Text PDFCell Stem Cell
January 2025
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:
Functional regeneration of the lung's gas exchange surface following injury requires the coordination of a complex series of cell behaviors within the alveolar niche. Using single-cell transcriptomics combined with lineage tracing of proliferating progenitors, we examined mouse lung regeneration after influenza injury, demonstrating an asynchronously phased response across different cellular compartments. This longitudinal atlas of injury responses has produced a catalog of transient and persistent transcriptional alterations in cells as they transit across axes of differentiation.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy.
J Neurol
January 2025
Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.
Background And Purpose: Endothelial dysfunction is considered an emerging therapeutic target to prevent complications during acute stroke and to prevent recurrent stroke. This review aims to provide an overview of the current knowledge on endothelial dysfunction, outline the diagnostic methods used to measure it and highlight the drugs currently being investigated for the treatment of endothelial dysfunction in acute ischemic stroke.
Methods: The PubMed® and ClinicalTrials.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!