p38 MAPK regulates steroidogenesis through transcriptional repression of STAR gene.

J Mol Endocrinol

Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USAGeriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA

Published: August 2014

STAR/StarD1, part of a protein complex, mediates the transport of cholesterol from the outer to inner mitochondrial membrane, which is the rate-limiting step for steroidogenesis, and where steroid hormone synthesis begins. Herein, we examined the role of oxidant-sensitive p38 MAPKs in the regulation of STAR gene transcription, using model steroidogenic cell lines. Our data indicate that oxidant activation of p38 MAPK exhibits a negative regulatory role in the induction of functional expression of STAR, as evidenced by enhanced induction of STAR (mRNA/protein) expression and increased steroidogenesis during pharmacological inhibition of p38 MAPK or in cells with increased transient overexpression of a dominant-negative (dn) form of p38 MAPKα or p38 MAPKβ. Studies with rat Star-promoter demonstrated that overexpression of p38 MAPKα-wt, -β, or -γ significantly reduced both basal and cAMP-sensitive promoter activity. In contrast, overexpression of p38 MAPKα-dn, -β, or -γ enhanced the Star promoter activity under basal conditions and in response to cAMP stimulation. Use of various constitutively active and dn constructs and designer knock-out cell lines demonstrated that MKK3 and MKK6, the upstream activators of p38 MAPKs, play a role in p38 MAPKα-mediated inhibition of Star promoter activity. In addition, our studies raised the possibility of CREB being a potential target of the p38 MAPK inhibitory effect on Star promoter activity. Collectively, these data provide novel mechanistic information about how oxidant-sensitive p38 MAPKs, particularly p38 MAPKα, contribute to the negative regulation of Star gene expression and inhibit steroidogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077990PMC
http://dx.doi.org/10.1530/JME-13-0287DOI Listing

Publication Analysis

Top Keywords

p38 mapk
16
promoter activity
16
p38
13
star gene
12
p38 mapks
12
star promoter
12
star
8
oxidant-sensitive p38
8
regulation star
8
cell lines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!