A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analyses of black Aspergillus species of peanut and maize for ochratoxins and fumonisins. | LitMetric

Analyses of black Aspergillus species of peanut and maize for ochratoxins and fumonisins.

J Food Prot

U.S. Department of Agriculture, Agricultural Research Service, Russell Research Center, Toxicology and Mycotoxin Research Unit, Athens, Georgia 30605.

Published: May 2014

AI Article Synopsis

  • * Preliminary findings suggest that black aspergilli can infect maize and peanut plants without showing symptoms, which may lead to hazardous accumulation of toxins in crops post-harvest if conditions are right.
  • * Out of 150 strains studied, Aspergillus nigri was the most common, and while none produced detectable amounts of ochratoxins, 30% of field isolates produced FB1, demonstrating these fungi's potential to contaminate maize with fumonisins.

Article Abstract

The genus Aspergillus section Nigri, or the black aspergilli, represents genetically closely related species that produce the mycotoxins, ochratoxins and the fumonisins. Fumonisin B1 (FB1) is of an added concern because it is also a virulence factor for maize. Our preliminary data indicated that black aspergilli could develop asymptomatic infections with maize and peanuts plants. Symptomless infections are potential problems, because under favorable conditions, there is a potential for accumulation of ochratoxins and the fumonisins in contaminated postharvest crops. In the present report, the ability of black aspergilli from peanuts and maize to produce ochratoxin A and FB1 on maize kernels was assessed. One hundred fifty strains from peanuts and maize were isolated from several southeastern and midwestern states. Aspergillus nigri (A. nigri var. nigri) was the dominant species (87%), while Aspergillus foetidus, Aspergillus japonicus, Aspergillus tubingensis, and Aspergillus carbonarius were infrequently isolated. None of the wild isolates produced detectable amounts of ochratoxins. However, we do report the occurrence of the fumonisins B1, B2, and B3. Of 54 field isolates, 30% (n = 16) produced FB1, 61% (n = 33) produced FB2, and 44% (n = 24) produced FB3. The amounts of fumonisins produced during the test period of 30 days suggest that these strains might be weak to moderate producers of fumonisin on maize. To our knowledge, this is a first report of FB1 and FB3 production by isolates of black aspergilli from an American cereal and legume.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028X.JFP-13-321DOI Listing

Publication Analysis

Top Keywords

black aspergilli
16
ochratoxins fumonisins
12
aspergillus nigri
8
peanuts maize
8
aspergillus
7
maize
7
fumonisins
5
produced
5
analyses black
4
black aspergillus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!