Human embryonic stem cells (hESCs) are generally induced to differentiate by forming spherical structures termed embryoid bodies (EBs) in the presence of soluble growth factors. hEBs are generated by suspending small clumps of hESC colonies; however, the resulting hEBs are heterogeneous because this method lacks the ability to control the number of cells in individual EBs. This heterogeneity affects factors that influence differentiation such as cell-cell contact and the diffusion of soluble factors, and consequently, the differentiation capacity of each EB varies. Here, we fabricated size-tunable concave microwells to control the physical environment, thereby regulating the size of EBs formed from single hESCs. Defined numbers of single hESCs were forced to aggregate and generate uniformly sized EBs with high fidelity, and the size of the EBs was controlled using concave microwells of different diameters. Differentiation patterns in H9- and CHA15-hESCs were affected by EB size in both the absence and presence of growth factors. By screening EB size in the presence of various BMP4 concentrations, a two-fold increase in endothelial cell differentiation was achieved. Because each hESC line has unique characteristics, the findings of this study demonstrate that concave microwells could be used to screen different EB sizes and growth factor concentrations to optimize differentiation for each hESC line.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2014.04.001 | DOI Listing |
Micromachines (Basel)
December 2024
Institute of Life Science and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques such as photolithography that are resource-intensive and complex. PDMS is more permeable to water vapor than to other gas molecules, resulting in the formation of microwells.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
: Vascular endothelial growth factor (VEGF) is a protein which stimulates the formation of new blood vessels, playing a crucial role in processes such as wound healing and tumor growth. : This study investigated the effects of VEGF on cell viability and osteogenic differentiation in mesenchymal stem cell (MSC) spheroids. Stem cell spheroids were fabricated using concave microwells and cultured with VEGF at concentrations of 0, 0.
View Article and Find Full Text PDFStem Cell Res Ther
October 2024
Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
Medicina (Kaunas)
April 2024
Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
: Tacrolimus is a macrolide lactone compound derived from the bacterium , widely known as an immunosuppressant. In basic research, the effects of tacrolimus on osteogenic differentiation have been tested using mesenchymal stem cells. In this study, tacrolimus's effects on the cellular survival and osteogenic differentiation of stem cell spheroids were investigated.
View Article and Find Full Text PDFACS Omega
April 2024
NTT Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam.
Three-dimensional (3D) cell culture systems are becoming increasingly popular due to their ability to mimic the complex process of angiogenesis in cancer, providing more accurate and physiologically relevant data than traditional two-dimensional (2D) cell culture systems. Microwell systems are particularly useful in this context as they provide a microenvironment that more closely resembles the in vivo environment than traditional microwells. Poly(ethylene glycol) (PEG) microwells are particularly advantageous due to their bio-inertness and the ability to tailor their material characteristics depending on the PEG molecular weight.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!