Two hallmarks of assembly line polyketide synthases have motivated an interest in these unusual multienzyme systems, their stereospecificity and their capacity for directional biosynthesis. In this review, we summarize the state of knowledge regarding the mechanistic origins of these two remarkable features, using the 6-deoxyerythronolide B synthase as a prototype. Of the 10 stereocenters in 6-deoxyerythronolide B, the stereochemistry of nine carbon atoms is directly set by ketoreductase domains, which catalyze epimerization and/or diastereospecific reduction reactions. The 10th stereocenter is established by the sequential action of three enzymatic domains. Thus, the problem has been reduced to a challenge in mainstream enzymology, where fundamental gaps remain in our understanding of the structural basis for this exquisite stereochemical control by relatively well-defined active sites. In contrast, testable mechanistic hypotheses for the phenomenon of vectorial biosynthesis are only just beginning to emerge. Starting from an elegant theoretical framework for understanding coupled vectorial processes in biology [Jencks, W. P. (1980) Adv. Enzymol. Relat. Areas Mol. Biol. 51, 75-106], we present a simple model that can explain assembly line polyketide biosynthesis as a coupled vectorial process. Our model, which highlights the important role of domain-domain interactions, not only is consistent with recent observations but also is amenable to further experimental verification and refinement. Ultimately, a definitive view of the coordinated motions within and between polyketide synthase modules will require a combination of structural, kinetic, spectroscopic, and computational tools and could be one of the most exciting frontiers in 21st Century enzymology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020578 | PMC |
http://dx.doi.org/10.1021/bi500290t | DOI Listing |
Heliyon
January 2025
Institute of Biology, Faculty of Sciences, University of Pécs, H-7624, Pécs, Hungary.
In the global effort to discover or design new effective antibiotics to fight infectious diseases, the increasingly available multi-omics data with novel bioinformatics tools open up new horizons for the exploration of the genetic potential of bacteria to synthesize bioactive secondary metabolites. Rare actinomycetes are a prolific source of structurally diverse secondary metabolites that exhibit remarkable clinical and industrial importance. Recently several excellent genome mining tools have been available for identifying biosynthetic gene clusters, however in cases of poor-quality sequences and inappropriate genome assembly, these tools are not always able to identify the corresponding gene clusters.
View Article and Find Full Text PDFBiochemistry
January 2025
Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
Janustatin A is a potently cytotoxic polyketide alkaloid produced at trace amounts by the marine bacterial plant symbiont . Its biosynthetic terminus features an unusual pyridine-containing bicyclic system of unclear origin, in which polyketide and amino acid extension units appear reversed compared to the order of enzymatic modules in the polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) assembly line. To elucidate unknown steps in heterocycle formation, we first established robust genome engineering tools in .
View Article and Find Full Text PDFSubabul (Leucaena leucocephala L.) is a leguminous species often referred to as the "miracle tree," it provides numerous ecosystem services and exhibits robust ecological characteristics. However, the infection caused by phytopathogenic fungi is poorly understood in Subabul.
View Article and Find Full Text PDFIUBMB Life
January 2025
Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany.
Lichens are mutualistic associations consisting of a primary fungal host, and one to few primary phototrophic symbiont(s), usually a green alga and/or a cyanobacterium. They form complex thallus structures, which provide unique and stable habitats for many other microorganisms. Frequently isolated from lichens are the so-called black fungi, or black yeasts, which are mainly characterized by melanized cell walls and extremophilic lifestyles.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Texenomycins are a family of linear lipopeptaibols with a long polyketide side chain at the N-terminus and 21 amino acid residues at the -terminus, presenting demonstrated potential as antibiotics against plant fungal pathogens. In this study, texenomycins were identified and isolated from the fungus strain TTI-0396 and showed effective antifungal properties against two plant pathogens and . Through analysis of the whole-genome data of strain TTI-0396, we discovered a hybrid PKS-NRPS system with the polyketide synthase (PKS: TexQ), thioesterase (TexO), acyl-CoA ligase (TexI), and three nonribosomal peptide synthetases (NRPSs: TexG, TexJ, TexV) in the gene cluster that were proposed to be responsible for the biosynthesis of texenomycins and another related lipopeptaibol, lipohexin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!