When formulating a deep brain stimulation (DBS) treatment plan for a patient with Parkinson's disease (PD), two critical questions should be addressed: 1- Which brain target should be chosen to optimize this patient's outcome? and 2- Should this patient's DBS operation be unilateral or bilateral? Over the past two decades, two targets have emerged as leading contenders for PD DBS; the subthalamic nucleus (STN) and the globus pallidus internus (GPi). While the GPi target does have a following, most centers have uniformly employed bilateral STN DBS for all Parkinson's disease cases (Figure 1). This bilateral STN "one-size-fits-all" approach was challenged by an editorial entitled "STN vs. GPi: The Rematch," which appeared in the Archives of Neurology in 2005. Since 2005, a series of well designed clinical trials and follow-up studies have addressed the question as to whether a more tailored approach to DBS therapy might improve overall outcomes. Such a tailored approach would include the options of targeting the GPi, or choosing a unilateral operation. The results of the STN vs. GPi 'rematch' studies support the conclusion that bilateral STN DBS may not be the best option for every Parkinson's disease surgical patient. Off period motor symptoms and tremor improve in both targets, and with either unilateral or bilateral stimulation. Advantages of the STN target include more medication reduction, less frequent battery changes, and a more favorable economic profile. Advantages of GPi include more robust dyskinesia suppression, easier programming, and greater flexibility in adjusting medications. In cases where unilateral stimulation is anticipated, the data favor GPi DBS. This review summarizes the accumulated evidence regarding the use of bilateral vs. unilateral DBS and the selection of STN vs. GPi DBS, including definite and possible advantages of different targets and approaches. Based on this evidence, a more patient-tailored, symptom specific approach will be proposed to optimize outcomes of PD DBS therapy. Finally, the importance of an interdisciplinary care team for screening and effective management of DBS patients will be reaffirmed. Interdisciplinary teams can facilitate the proposed patient-specific DBS treatment planning and provide a more thorough analysis of the risk-benefit ratio for each patient.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000041 | PMC |
http://dx.doi.org/10.1002/mdc3.12004 | DOI Listing |
J Neurosurg
January 2025
1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing.
Objective: The aim of this study was to evaluate outcomes of deep brain stimulation (DBS) for Meige syndrome, compare the efficacy of globus pallidus internus (GPi) and subthalamic nucleus (STN) as targets, and identify potential outcome predictors.
Methods: The PubMed, Embase, and Web of Science databases were systematically searched to collect individual data from patients with Meige syndrome receiving DBS. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) scores.
PLoS Biol
January 2025
Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.
The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands.
View Article and Find Full Text PDFJ Clin Neurosci
February 2025
Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
Objective: This systematic review and meta-analysis aimed to compare the efficacy and safety of deep brain stimulation (DBS) targeting subthalamic nucleus (STN) versus the globus pallidus internus (GPI) in the treatment of dystonia.
Methods: A comprehensive search strategy was implemented up to July 2024, across five databases, identifying studies relevant to STN-DBS and GPI-DBS in dystonia. Eligibility criteria included randomized controlled trials (RCTs) and observational studies comparing the two interventions.
Parkinsons Dis
November 2024
Program in Neuroscience, Central Michigan University, Mount Pleasant 48859, Michigan, USA.
A cardinal symptom of Parkinson's disease (PD) is motor dysfunction, including bradykinesia and tremors, which is quantified in the Unified PD Rating Scale (UPDRS). Although some medications provide palliative treatments for these motor deficits, their efficacy wanes and can produce unwanted side effects, such as dyskinesia. Deep-brain stimulation (DBS) has provided an alternative treatment strategy that can benefit many patients, but optimal target structures for DBS and its long-term efficacy are not fully understood.
View Article and Find Full Text PDFActa Neurochir (Wien)
November 2024
Department of Neurosurgery, Memorial Sisli Hospital, Istanbul, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!