Flaxseed consumption reduces blood pressure in patients with hypertension by altering circulating oxylipins via an α-linolenic acid-induced inhibition of soluble epoxide hydrolase.

Hypertension

From the Canadian Centre for Agri-food Research in Health and Medicine (S.P.B.C., H.M.A., E.D., G.N.P.), Institute of Cardiovascular Sciences (S.P.B.C., A.R., E.D., G.N.P.), Asper Clinical Research Institute (R.G.), St Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada; and Departments of Physiology (S.P.B.C., A.R., G.N.P.), Human Nutritional Sciences (H.M.A.), and Internal Medicine (A.R.), University of Manitoba, Winnipeg, Manitoba, Canada.

Published: July 2014

AI Article Synopsis

Article Abstract

Unlabelled: In a randomized, double-blinded, controlled clinical trial, participants with peripheral arterial disease (75% hypertensive) consumed 30 g of milled flaxseed/d for 6 months. The flaxseed group exhibited significant reductions in systolic (-10 mm Hg) and diastolic (-7 mm Hg) blood pressure. Flaxseed contains the n3 fatty acid α-linolenic acid. Plasma α-linolenic acid increased with ingestion of flaxseed and was inversely associated with blood pressure. However, the antihypertensive mechanism was unclear. Oxylipins derived from polyunsaturated fatty acids regulate vascular tone. Therefore, the objective was to examine whether flaxseed consumption altered plasma oxylipins in a manner that influenced blood pressure. Plasma of FlaxPAD (Flaxseed for Peripheral Arterial Disease) participants underwent solid phase extraction and high-performance liquid chromatography-mass spectrometry/mass spectrometry analysis. The flaxseed group exhibited significant decreases in 8 plasma oxylipins versus control. Six of these (5,6-, 8,9-, 11,12-, 14,15-dihydroxyeicosatrienoic acid and 9,10- and 12,13-dihydroxyoctadecenoic acid) were products of soluble epoxide hydrolase, a pharmacological target for antihypertensive treatment. Patients exhibiting a decrease in total plasma soluble epoxide hydrolase-derived oxylipins, exhibited a significant decrease in systolic blood pressure (mean [95% confidence interval], -7.97 [-14.4 to -1.50] mm Hg) versus those who exhibited increased plasma soluble epoxide hydrolase-derived oxylipins (+3.17 [-4.78 to 11.13] mm Hg). These data suggest that a flaxseed bioactive may have decreased blood pressure via soluble epoxide hydrolase inhibition. Using a soluble epoxide hydrolase inhibitor screening assay, increasing concentrations of α-linolenic acid decreased soluble epoxide hydrolase activity (P=0.0048; ρ=-0.94). In conclusion, α-linolenic acid in flaxseed may have inhibited soluble epoxide hydrolase, which altered oxylipin concentrations that contributed to the antihypertensive effects in patients with peripheral arterial disease.

Clinical Trial Registration Url: http://www.clinicaltrials.gov. Unique identifier: NCT00781950.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.03179DOI Listing

Publication Analysis

Top Keywords

soluble epoxide
32
blood pressure
24
epoxide hydrolase
24
α-linolenic acid
16
peripheral arterial
12
flaxseed
9
flaxseed consumption
8
soluble
8
inhibition soluble
8
epoxide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!