A novel family of structurally stable double stranded DNA catenanes.

Chem Commun (Camb)

Universität Bonn, LIMES-Life and Medical Science Institut, Program Unit Chemical Biology & Medicinal Chemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.

Published: June 2014

Here we describe the design, assembly and characterisation of different structurally stable and highly polyvalent DNA catenanes. We synthesized a series of different catenated DNA nanostructures, among them symmetric ones containing two 126 or 168 base-pair rings, non-symmetric ones with a 126 and a 168 base-pair ring, and a [3]catenane containing three 126 base-pair rings. Reversible and quantitative on/off switching of the mobility of the rings was demonstrated as a proof-of-concept for the employment of these catenanes as dynamic DNA-nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc02030hDOI Listing

Publication Analysis

Top Keywords

structurally stable
8
dna catenanes
8
126 168
8
168 base-pair
8
base-pair rings
8
novel family
4
family structurally
4
stable double
4
double stranded
4
stranded dna
4

Similar Publications

Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.

View Article and Find Full Text PDF

The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.

View Article and Find Full Text PDF

Photochemistry of Microsolvated Nitrous Acid: Observation of the Water-Separated Complex of Nitric Oxide and Hydroxyl Radical.

J Phys Chem Lett

January 2025

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

The photochemistry of nitrous acid (HONO) plays a crucial role in atmospheric chemistry as it serves as a key source of hydroxyl radicals (OH) in the atmosphere; however, our comprehension of the underlying mechanism for the photochemistry of HONO especially in the presence of water is far from being complete as the transient intermediates in the photoreactions have not been observed. Herein, we report the photochemistry of microsolvated HONO by water in a cryogenic N matrix. Specifically, the 1:1 hydrogen-bonded water complex of HONO was facially prepared in the matrix through stepwise photolytic O oxidation of the water complex of imidogen (NH-HO) via the intermediacy of the elusive water complex of peroxyl isomer HNOO.

View Article and Find Full Text PDF

Achieving stable Zn anodes is essential for advancing high-performance Zn metal batteries. Here, we propose a Sabatier principle inspired bifunctional transition-metal (TM) interface to enable homogeneous Zn dissolution during discharging and dendrite-free Zn deposition during charging. Among various TM-coated Zn (TM@Zn) electrodes, Cu@Zn exhibits the highest reversibility and structural stability, attributed to the optimal interaction between Cu and Zn.

View Article and Find Full Text PDF

Pharmacophore-based virtual screening of the chromone derivatives as potential therapeutic for Alzheimer's disease.

J Biomol Struct Dyn

January 2025

Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, India.

Alzheimer's disease is one of the most complex neurological disorders and millions of people are suffering from this disease all over the world. In the past two decades acetylcholinesterase (AChE) has been the most explored pathological hallmark. The generation of potent AChE inhibitors has grown as a rapid pathological tool for the efficacious treatment of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!