Here we describe the design, assembly and characterisation of different structurally stable and highly polyvalent DNA catenanes. We synthesized a series of different catenated DNA nanostructures, among them symmetric ones containing two 126 or 168 base-pair rings, non-symmetric ones with a 126 and a 168 base-pair ring, and a [3]catenane containing three 126 base-pair rings. Reversible and quantitative on/off switching of the mobility of the rings was demonstrated as a proof-of-concept for the employment of these catenanes as dynamic DNA-nanostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cc02030h | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Parul Institute of Applied Sciences, Parul University, Vadodara, India.
Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.
View Article and Find Full Text PDFDalton Trans
January 2025
Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany.
The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
The photochemistry of nitrous acid (HONO) plays a crucial role in atmospheric chemistry as it serves as a key source of hydroxyl radicals (OH) in the atmosphere; however, our comprehension of the underlying mechanism for the photochemistry of HONO especially in the presence of water is far from being complete as the transient intermediates in the photoreactions have not been observed. Herein, we report the photochemistry of microsolvated HONO by water in a cryogenic N matrix. Specifically, the 1:1 hydrogen-bonded water complex of HONO was facially prepared in the matrix through stepwise photolytic O oxidation of the water complex of imidogen (NH-HO) via the intermediacy of the elusive water complex of peroxyl isomer HNOO.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
PolyU: The Hong Kong Polytechnic University, Department of Industrial and Systems Engineering, CHINA.
Achieving stable Zn anodes is essential for advancing high-performance Zn metal batteries. Here, we propose a Sabatier principle inspired bifunctional transition-metal (TM) interface to enable homogeneous Zn dissolution during discharging and dendrite-free Zn deposition during charging. Among various TM-coated Zn (TM@Zn) electrodes, Cu@Zn exhibits the highest reversibility and structural stability, attributed to the optimal interaction between Cu and Zn.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, India.
Alzheimer's disease is one of the most complex neurological disorders and millions of people are suffering from this disease all over the world. In the past two decades acetylcholinesterase (AChE) has been the most explored pathological hallmark. The generation of potent AChE inhibitors has grown as a rapid pathological tool for the efficacious treatment of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!