Pt decorated TiO2 has, over the past decades, been a key material for photocatalytic hydrogen production. The present work shows that growing anodic self-organized TiO2 nanotubes from Ti-Pt alloy with a low Pt content of 0.2 at% leads to oxide nanotube layers that are self-decorated with Pt nanoparticles of 4-5 nm in diameter. The average particle spacing is in the range of ~50 nm and is partially adjustable by the anodization conditions. This intrinsic decoration of TiO2 nanotubes with Pt leads to a highly active photocatalyst for the production of H2 under UV or visible light conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc01287aDOI Listing

Publication Analysis

Top Keywords

tio2 nanotubes
12
self-decoration metal
4
metal particles
4
tio2
4
particles tio2
4
nanotubes highly
4
highly efficient
4
efficient photocatalytic
4
photocatalytic production
4
production decorated
4

Similar Publications

The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.

View Article and Find Full Text PDF

The growing modern industry has promoted the development of gas sensors for environmental monitoring and safety checks. However, the traditional chemical resistance gas sensor still has some disadvantages such as high power consumption and limited detection, mainly due to the lack of charge transfer ability of sensing materials. In this paper, an ordered UV-activated gas sensor with mesoporous ZnO/TiO nanotube composite was prepared by precisely controlling the growth of ZnO on the inner wall of TiO nanotube.

View Article and Find Full Text PDF

In single-atomic photocatalyst systems, the spatial distribution of single atoms on heterojunctions and its impact on photocatalytic processes, particularly on carrier dynamics and the CO reduction process involving multielectron reactions, remains underexplored. To address this gap, a WO/TiO nanotube heterojunction with a spatially selective distribution of Au single atoms was developed using an oxygen vacancy anchoring strategy for CO photoreduction. By anchoring Au atoms onto the WO or TiO components, a substantial number of active sites are generated and the electron transfer pathways from the heterojunction toward Au sites are formed, thereby enhancing carrier separation and concentration.

View Article and Find Full Text PDF

The high overpotential of the oxygen evolution reaction (OER) and the strong corrosion of the anode are the main problems currently faced by the zinc hydrometallurgical process. This study achieved the successful synthesis of titanium dioxide nanotubes doped by Al and V on a TC4 alloy. Subsequently, a composite electrode, TC4/AVTN-7/PbO-ZrO-CoO, was prepared utilizing composite electrodeposition.

View Article and Find Full Text PDF

This work aims to describe the effect of the surface modification of TiO nanotube (TNT) layers on Ti-6Al-4V (TiAlV) alloy by ultrathin TiO coatings prepared via Atomic Layer Deposition (ALD) on the growth of MG-63 osteoblastic cells. The TNT layers with two distinctly different inner diameters, namely ∼15 nm and ∼50 nm, were prepared via anodic oxidation of the TiAlV alloy. Flat, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!