A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. | LitMetric

Expenses associated with shipping, installation, land, regulatory compliance and on-going maintenance and operations of utility-scale photovoltaics can be significantly reduced by increasing the power conversion efficiency of solar modules through improved materials, device designs and strategies for light management. Single-junction cells have performance constraints defined by their Shockley-Queisser limits. Multi-junction cells can achieve higher efficiencies, but epitaxial and current matching requirements between the single junctions in the devices hinder progress. Mechanical stacking of independent multi-junction cells circumvents these disadvantages. Here we present a fabrication approach for the realization of mechanically assembled multi-junction cells using materials and techniques compatible with large-scale manufacturing. The strategy involves printing-based stacking of microscale solar cells, sol-gel processes for interlayers with advanced optical, electrical and thermal properties, together with unusual packaging techniques, electrical matching networks, and compact ultrahigh-concentration optics. We demonstrate quadruple-junction, four-terminal solar cells with measured efficiencies of 43.9% at concentrations exceeding 1,000 suns, and modules with efficiencies of 36.5%.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat3946DOI Listing

Publication Analysis

Top Keywords

solar cells
12
multi-junction cells
12
quadruple-junction four-terminal
8
microscale solar
8
cells
7
printing-based assembly
4
assembly quadruple-junction
4
four-terminal microscale
4
solar
4
cells high-efficiency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!