AI Article Synopsis

  • Both serotonin (5-HT) and the neuropeptide SCPb enhance inward sodium currents while affecting potassium currents in B15 neurons, while FMRFamide has the opposite effect on sodium currents.
  • cAMP appears to play a significant role in modulating these ionic currents due to its increased levels from 5-HT and SCPb applications.
  • The research indicates that multiple second-messenger systems, including phospholipase C/protein kinase C pathways and arachidonic acid, contribute to the varied responses of B15 neurons to different chemical signals.

Article Abstract

Both 5-HT and the 9 amino acid neuropeptide SCPb modulate 3 ionic currents in B15, enhancing a voltage-dependent inward sodium current, decreasing an outward potassium current and increasing an inward rectifying potassium current. In contrast, FMRFamide decreases a voltage-dependent inward sodium current and increases an outward potassium current. We have also investigated the roles of several second-messenger systems that may be mediating the effects of these modulators. Bath application of membrane permeable analogs of cAMP enhance the voltage-dependent inward sodium current and both 5-HT and SCPb increase cAMP levels in B15, suggesting that cAMP may be mediating part of the observed effects of these transmitters on B15. Experiments with phorbol ester, a protein kinase inhibitor, and a phospholipase inhibitor suggest that the phospholipase C/protein kinase C cascade may decrease an outward potassium current. Thus, 5-HT and SCPb may activate multiple second-messenger systems to modulate 3 ionic currents in B15. Additional studies suggest that a cascade involving arachidonic acid may be involved in mediating part of the FMRFamide responses in B15. These studies are beginning to define molecular mechanisms whereby a neuron differentially modulates multiple ionic currents in response to distinct chemical messengers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6569666PMC
http://dx.doi.org/10.1523/JNEUROSCI.09-09-03218.1989DOI Listing

Publication Analysis

Top Keywords

ionic currents
16
potassium current
16
voltage-dependent sodium
12
sodium current
12
outward potassium
12
modulate ionic
8
currents b15
8
second-messenger systems
8
current 5-ht
8
5-ht scpb
8

Similar Publications

Strategies and Prospects for Engineering a Stable Zn Metal Battery: Cathode, Anode, and Electrolyte Perspectives.

Acc Chem Res

January 2025

Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.

ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.

View Article and Find Full Text PDF

Worth your sweat: wearable microfluidic flow rate sensors for meaningful sweat analytics.

Lab Chip

January 2025

Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.

Wearable microfluidic sweat sensors could play a major role in the future of monitoring health and wellbeing. Sweat contains biomarkers to monitor health and hydration status, and it can provide information on drug intake, making it an interesting non-invasive alternative to blood. However, sweat is not created in excess, and this requires smart sweat collection strategies to handle small volumes.

View Article and Find Full Text PDF

Realizing a 3C Fast-Charging Practical Sodium Pouch Cell.

Angew Chem Int Ed Engl

January 2025

Beihang University, 37 Xue Yuan Road, Hai Dian District, 100191, Beijing, CHINA.

Sodium-ion batteries (SIBs), endowed with relatively small Stokes radius and low desolvation energy for Na+, are reckoned as a promising candidate for fast-charging endeavors. However, the C-rate charging capability of practical energy-dense sodium-ion pouch cells is currently limited to ≤1C, due to the high propensity for detrimental metallic Na plating on the hard carbon (HC) anode at elevated rates. Here, an ampere-hour-level sodium-ion pouch cell capable of 3C charging is successfully developed via phosphorus (P)-sulfur (S) interphase chemistry.

View Article and Find Full Text PDF

Utilization of AF4 for characterizing complex nanomaterial drug products: Reexamining sample recovery and its impact on particle size distribution as a quality attribute.

J Chromatogr A

January 2025

Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA. Electronic address:

Asymmetrical flow field-flow fractionation (AF4) with multi-detection has continued to gain wider acceptance for characterizing complex drug products. An important quality attribute for these products is the measurement of the particle size distribution (PSD). Current limitations of established procedures (e.

View Article and Find Full Text PDF

After cyclo-pentazolate anion, a 5/6 fused structure of N is constructed, and four novel nitrogen-rich ionic compounds are assembled on its basis. The results of the quantum calculations revealed an uneven distribution of electrons on cyclo-N , with significant charge density near the N5/N9 atoms and an ADCH charge of -0.425.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!