Fecundity compensation and fecundity reduction among populations of the three-spined stickleback infected by Schistocephalus solidus in Alaska.

Parasitology

Department of Ecology and Evolutionary Biology, 400 Lindy Boggs Center, Tulane University,New Orleans, Louisiana 70118,USA.

Published: July 2014

We surveyed nine populations of the three-spined stickleback infected by the diphyllobothriidean cestode Schistocephalus solidus from south-central Alaska for two apparent forms of tolerance to infection in females capable of producing egg clutches notwithstanding large parasite burdens. Seven populations exhibited fecundity reduction, whereas two populations showed fecundity compensation. Our data suggest that fecundity reduction, a side effect resulting from nutrient theft, occurs in two phases of host response influenced by the parasite : host body mass (BM) ratio. The first is significantly reduced ovum mass without significant reduction in clutch size, and the second one involves significant reductions in both ovum mass and clutch size. Thus, ovum mass of host females who are functionally being starved through nutrient theft seems to be more readily influenced by parasitism and, therefore, decreased before clutch size is reduced. This inference is consistent with expectations based on the biology of and effect of feeding ration on reproduction in stickleback females. Fecundity compensation appears to be uncommon among populations of three-spined stickleback in Alaska and rare among populations throughout the northern hemisphere. Fecundity reduction seems to be common, at least among stickleback populations in Alaska.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0031182014000535DOI Listing

Publication Analysis

Top Keywords

fecundity reduction
16
fecundity compensation
12
populations three-spined
12
three-spined stickleback
12
ovum mass
12
clutch size
12
reduction populations
8
stickleback infected
8
schistocephalus solidus
8
nutrient theft
8

Similar Publications

Background: C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model.

View Article and Find Full Text PDF

China is currently facing a notable decline in fertility rates. This research introduces a novel perspective on the factors influencing fertility among women of reproductive age, representing the first attempt to examine the impact of peer grit on female fertility. Analyzing nationally representative panel data from China and leveraging plausibly exogenous variations in peer exposure across cohorts, we find that peer grit is associated with a reduction in fertility behavior and intentions.

View Article and Find Full Text PDF

Spermatogenesis is finely regulated by histone methylation, which is crucial for regulating gene expression and chromatin remodeling. Functional studies have demonstrated that the histone lysine methyltransferases (KMTs) SETD1B, CFP1, SETDB1, G9A, and SETD2 play pivotal roles in spermatogenesis through establishing the key histone methylation marks, H3K4me3, H3K9me2, H3K9me3, and H3K36me3, respectively. This study aimed to evaluate the spatiotemporal expression of these KMTs and methylation marks as well as senescence-associated β-galactosidase (β-GAL), transcriptional activity, and apoptosis rates in mouse testes during biological aging.

View Article and Find Full Text PDF

The mosquito is a vector of dengue, Zika, and chikungunya. The mosquito's reliance on blood facilitates the transmission of these viral pathogens to humans. Digestion of blood proteins depends on the biphasic expression of serine proteases, with trypsin-like activity contributing to most of the activity in the midgut.

View Article and Find Full Text PDF

S-Sulfenylation-mediated inhibition of the GSNOR1 activity regulates ovule development in Arabidopsis.

J Genet Genomics

January 2025

State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Reactive oxygen species (ROS) and nitric oxide (NO) are two critical classes of signaling molecules that regulate plant development and stress responses. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by the highly conserved GSNO reductase (GSNOR). However, the molecular mechanisms underlying ROS-mediated regulation of GSNOR remain largely unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!