Background: Food allergens have been evidenced in breast milk under physiological conditions, but the kinetic and the role of this passage in food allergies are still unclear. We then aimed to analyze the passage of peanut allergens in human breast milk and their allergenicity/immunomodulatory properties.
Methods: Human breast milk was collected from two non-atopic peanut-tolerant mothers before and at different time points after ingestion of 30 g of commercial roasted peanut. Ara h 6, Ara h 6 immune complexes, and the IgE binding capacity of breast milk samples were measured using specific immunoassays. Their allergenic functionality was then assessed using cell-based assay. Finally, human breast milk obtained before or after peanut ingestion was administered intragastrically to BALB/c mice at different ages, and mice were further experimentally sensitized to peanut using cholera toxin.
Results: Ara h 6 is detected as soon as 10 min after peanut ingestion, with peak values observed within the first hour after ingestion. The transfer is long-lasting, small quantities of peanut allergens being detected over a 24-h period. IgG-Ara h 6 and IgA-Ara h 6 immune complexes are evidenced, following a different kinetic of excretion than free allergens. Peanut allergens transferred in milk are IgE reactive and can induce an allergic reaction in vitro. However, administration of human breast milk to young mice, notably before weaning, does not lead to sensitization, but instead to partial oral tolerance.
Conclusion: The low quantities of immunologically active allergens transferred through breast milk may prevent instead of priming allergic sensitization to peanut.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/all.12411 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!