Chronic stress is a risk factor for psychiatric disorders but does not necessarily lead to uniform long-term effects on mental health, suggesting modulating factors such as genetic predispositions. Here we address the question whether natural genetic variations in the mouse CRH receptor 1 (Crhr1) locus modulate the effects of adolescent chronic social stress (ACSS) on long-term stress hormone dysregulation in outbred CD1 mice, which allows a better understanding of the currently reported genes × environment interactions of early trauma and CRHR1 in humans. We identified 2 main haplotype variants in the mouse Crhr1 locus that modulate the long-term effects of ACSS on basal hypothalamic-pituitary-adrenal axis activity. This effect is likely mediated by higher levels of CRHR1, because Crhr1 mRNA expression and CRHR1 binding were enhanced in risk haplotype carriers. Furthermore, a CRHR1 receptor antagonist normalized these long-term effects. Deep sequencing of the Crhr1 locus in CD1 mice revealed a large number of linked single-nucleotide polymorphisms with some located in important regulatory regions, similar to the location of human CRHR1 variants implicated in modulating gene × stress exposure interactions. Our data support that the described gene × stress exposure interaction in this animal model is based on naturally occurring genetic variations in the Crhr1 gene associated with enhanced CRHR1-mediated signaling. Our results suggest that patients with a specific genetic predisposition in the CRHR1 gene together with an exposure to chronic stress may benefit from a treatment selectively antagonizing CRHR1 hyperactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2013-1986 | DOI Listing |
Nat Biomed Eng
December 2024
Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
The engraftment of haematopoietic stem and progenitor cells (HSPCs), particularly in cord-blood transplants, remains challenging. Here we report the role of the corticotropin-releasing hormone (CRH) in enhancing the homing and engraftment of human-cord-blood HSPCs in bone marrow through mechanical remodelling. By using microfluidics, intravital two-photon imaging and long-term-engraftment assays, we show that treatment with CRH substantially enhances HSPC adhesion, motility and mechanical remodelling, ultimately leading to improved bone-marrow homing and engraftment in immunodeficient mice.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia.
Post-traumatic stress disorder (PTSD) is a multifactorial psychological disorder that affects different neurotransmitter systems, including the central CRH system. CRH acts via the CRHR1 and CRHR2 receptors, which exert opposite effects, i.e.
View Article and Find Full Text PDFJ Appl Toxicol
October 2024
Graduate School of Maritime Science, Kobe University, Kobe, Japan.
Zinc oxide nanoparticles (ZnO NPs) are widely used in manufacturing cosmetic and pharmaceutical products. Although previous studies have reported their toxic effects on fish, the underlying mechanisms behind their toxic effects are yet to be identified. This study evaluated the impact of ZnO NPs on marine medaka's survival, heart rates (Oryzias melastigma), and the expression of genes linked to neurotoxicity and cardiovascular toxicity.
View Article and Find Full Text PDFBiol Sex Differ
September 2024
Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain.
Pharmacopsychiatry
November 2024
Max Planck Institute of Psychiatry, Munich, Germany.
The future of depression pharmacotherapy lies in a precision medicine approach that recognizes that depression is a disease where different causalities drive symptoms. That approach calls for a departure from current diagnostic categories, which are broad enough to allow adherence to the "one-size-fits-all" paradigm, which is complementary to the routine use of "broad-spectrum" mono-amine antidepressants. Similar to oncology, narrowing the overinclusive diagnostic window by implementing laboratory tests, which guide specifically targeted treatments, will be a major step forward in overcoming the present drug discovery crisis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!