Oxidative stress increases neurogenesis and oligodendrogenesis in adult neural progenitor cells.

Stem Cells Dev

1 Neurology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden .

Published: October 2014

Hydrogen peroxide (H2O2) is a reactive oxygen species that is involved in immunity and neuroinflammation. Here, we investigated whether and how pathophysiological levels of H2O2 influenced the differentiation of neural progenitor cells (NPCs). H2O2 levels within the range measured at neuroinflammatory events were applied to rat primary NPC cultures during 24 h, and effects were assessed directly after exposure or in NPCs that were differentiated for 7 days after H2O2 removal. Exposed differentiated NPCs showed significantly increased numbers of neurons and oligodendrocytes compared with unexposed controls. To identify the possible origin of this differentiation result, we characterized the undifferentiated culture and found a significant increase in both OLIG2(+) cells and proliferative ASCL1(+) C cells that could contribute to both more neurons and oligodendrocytes. In addition, H2O2-induced neurogenesis was supported by western blot and paralleled by gene expression analyses, which revealed an increased expression of the proneural gene Ngn2 and the neuronally expressed gene β-III tubulin. To investigate potential mechanisms for the observed effects on NPC differentiation, we performed gene expression profile analyses for oxidative stress and antioxidant-related and chromatin modification genes where the expression of several important genes was affected by the exposure. Increased oligodendrocyte numbers correlated with increased expression of the chromatin modification enzyme Sirt2, suggesting the involvement of Sirt2 in oligodendrocyte differentiation. Our results suggest a modulatory effect on the differentiation potential of NPCs by H2O2. Our findings indicate that H2O2 exposure has significant effects on NPC proliferation, differentiation, and vulnerability. These results have implications for regeneration after any neuroinflammatory event.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2013.0452DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
neural progenitor
8
progenitor cells
8
npcs h2o2
8
neurons oligodendrocytes
8
gene expression
8
increased expression
8
effects npc
8
chromatin modification
8
h2o2
6

Similar Publications

Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.

Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).

View Article and Find Full Text PDF

Ammonia is a product of amino acid metabolism that accumulates in the blood of patients with liver cirrhosis, leading to neurotoxic effects and hepatic encephalopathy (HE). HE manifestations can range from mild, subclinical disturbances in cognition, or minimal HE (mHE) to gross disorientation and coma, a condition referred to as overt HE. Many blood-based biomarkers reflecting these neurotoxic effects of ammonia and liver disease can be measured in the blood allowing the development of new biomarkers to diagnose cirrhosis patients at risk of developing HE.

View Article and Find Full Text PDF

Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.

View Article and Find Full Text PDF

Alzheimer's disease is a complex neurodegenerative disease characterized by progressive decline in cognitive function and behaviour. Ginger is the rhizome of the plant Zingiber officinale Roscoe, has been an important ingredient of many Ayurveda formulations to treat neurological disorders. The present study aims to estimate the variation of 6-gingerol content in nine different ginger samples collected from Manipur, India, investigate the neuroprotective potential of the most potent ginger sample against scopolamine-induced cognitively impaired mice, and validate the therapeutic claim by molecular docking analysis.

View Article and Find Full Text PDF

Background: The role and relevance of macrophages both as causes and therapeutics of cellular senescence is rapidly emerging. However, current knowledge regarding the extent and depth of senescence in macrophages in vivo is limited and controversial. Further, acute models of stress-induced senescence in transformed/cancerous macrophage cell lines are being used although their efficacy and relevance are not characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!