A quantitative life history of endangered humpback chub that spawn in the Little Colorado River: variation in movement, growth, and survival.

Ecol Evol

U.S. Fish and Wildlife Service, Southwest Forest Service Science Complex Bldg 82 West, 2500 S. Pine Knoll Dr., Flagstaff, Arizona, 86001.

Published: April 2014

While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to understand how partial migratory populations are responding to ongoing environmental change. Environmental change can lead to differences in the fitness of residents and migrants, which could eventually lead to changes in the frequency of the strategies in the overall population. Here, we address questions concerning the life history of the endangered Gila cypha (humpback chub) in the regulated Colorado River and the unregulated tributary and primary spawning area, the Little Colorado River. We develop eight multistate models for the population based on three movement hypotheses, in which states are defined in terms of fish size classes and river locations. We fit these models to mark-recapture data collected in 2009-2012. We compare survival and growth estimates between the Colorado River and Little Colorado River and calculate abundances for all size classes. The best model supports the hypotheses that larger adults spawn more frequently than smaller adults, that there are residents in the spawning grounds, and that juveniles move out of the Little Colorado River in large numbers during the monsoon season (July-September). Monthly survival rates for G. cypha in the Colorado River are higher than in the Little Colorado River in all size classes; however, growth is slower. While the hypothetical life histories of life-long residents in the Little Colorado River and partial migrants spending most of its time in the Colorado River are very different, they lead to roughly similar fitness expectations when we used expected number of spawns as a proxy. However, more research is needed because our study period covers a period of years when conditions in the Colorado River for G. cypha are likely to have been better than has been typical over the last few decades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997317PMC
http://dx.doi.org/10.1002/ece3.990DOI Listing

Publication Analysis

Top Keywords

colorado river
44
river
12
size classes
12
colorado
11
life history
8
history endangered
8
humpback chub
8
partial migratory
8
environmental change
8
quantitative life
4

Similar Publications

The Influence of Migration Timing and Local Conditions on Reproductive Timing in Arctic-Breeding Birds.

Ecol Evol

January 2025

Wildlife Research Division Environment and Climate Change Canada Ottawa Ontario Canada.

For birds breeding in the Arctic, nest success is affected by the timing of nest initiation, which is partially determined by local conditions such as snow cover. However, conditions during the non-breeding season can carry over to affect the timing of breeding. We used tracking and breeding data from 248 individuals of 8 species and subspecies of Arctic-breeding shorebirds to estimate how the timing of nest initiation is related to local conditions like snowmelt phenology versus prior conditions, measured by the timing and speed of migration.

View Article and Find Full Text PDF

Arctic rivers may be the largest net sources of mercury (Hg) to the Arctic Ocean, yet riverine sources of Hg remain poorly characterized compared to atmospheric processes. This article reviews the current state of knowledge on Hg inputs to the Mackenzie River and Valley in Northern Canada from six point and non-point sources. Point sources include the locations of mines, fossil fuel extraction facilities, and retrogressive permafrost thaw slumps.

View Article and Find Full Text PDF

Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.

View Article and Find Full Text PDF

Evolutionary dynamics of mitochondrial genomes and intracellular transfers among diploid and allopolyploid cotton species.

BMC Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.

Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.

Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.

View Article and Find Full Text PDF

Efficacy, Safety, and Immunogenicity of the MATISSE (Maternal Immunization Study for Safety and Efficacy) Maternal Respiratory Syncytial Virus Prefusion F Protein Vaccine Trial.

Obstet Gynecol

February 2025

Children's Hospital Colorado, Aurora, Colorado; Vaccine Research and Development, Pfizer Inc, Pearl River, New York; the South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, and Famcru, Department of Paediatrics and Child Health, University of Stellenbosch, and the Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Vaccines and Immunity Team, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, the Gambia; Institute for International Health Charité, Universitätsmedizin, Berlin, Germany; Vaccine Research and Development, Pfizer Ltd, Marlow, United Kingdom; Instituto de Maternidad y Ginecología Nuestra Señora de Las Mercedes, San Miguel de Tucumán, and iTrials-Hospital Militar Central and iTrials, Buenos Aires, Argentina; Clinical Research Prime, Idaho Falls, Idaho; Boeson Research, Missoula, Montana; Meridian Clinical Research, Hastings, Nebraska; Asian Hospital and Medical Center, Manila, the Philippines; Department of Pediatrics, Spaarne Gasthuis, Haarlem and Hoofddorp, the Department of Pediatrics, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, and the ReSViNET Foundation, Zeist, the Netherlands; Meilahti Vaccine Research Center MeVac, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; National Taiwan University Hospital, Taipei, Taiwan; the Department of Obstetrics and Gynecology, Sendai City Hospital, Sendai, Japan; Institute of Biomedical Sciences, University of Chile School of Medicine, Santiago, Chile; University of Otago and New Zealand Clinical Research, Christchurch, New Zealand; CHU Sainte-Justine, Montreal, Quebec, Canada; Hospital Moinhos de Vento and Pontifícia Universidade Católica RGS, Porto Alegre, Brazil; the Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Arké SMO S.A. de C.V., Mexico City, Mexico; University of Western Australia School of Medicine, Vaccine Trials Group, Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, and Perth Children's Hospital, Nedlands, Western Australia, and Vaccine Clinical Research, Pfizer Inc, Sydney, Australia; and Worldwide Safety, Pfizer Srl, Milan, Italy.

Objective: To evaluate descriptive efficacy data, exploratory immunogenicity data, and safety follow-up through study completion from the global, phase 3 MATISSE (Maternal Immunization Study for Safety and Efficacy) maternal vaccination trial of bivalent respiratory syncytial virus (RSV) prefusion F protein vaccine (RSVpreF).

Methods: MATISSE was a phase 3, randomized, double-blinded, placebo-controlled trial. Healthy pregnant participants aged 49 years or younger at 24-36 weeks of gestation were randomized (1:1) to receive a single RSVpreF 120 micrograms or placebo dose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!