Repair and regeneration of bone requires mesenchymal stem cells that by self-renewal, are able to generate a critical mass of cells with the ability to differentiate into osteoblasts that can produce bone protein matrix (osteoid) and enable its mineralization. The number of human mesenchymal stem cells (hMSCs) diminishes with age and ex vivo replication of hMSCs has limited potential. While propagating hMSCs under hypoxic conditions may maintain their ability to self-renew, the strategy of using human telomerase reverse transcriptase (hTERT) to allow for hMSCs to prolong their replicative lifespan is an attractive means of ensuring a critical mass of cells with the potential to differentiate into various mesodermal structural tissues including bone. However, this strategy must be tempered by the oncogenic potential of TERT-transformed cells, or their ability to enhance already established cancers, the unknown differentiating potential of high population doubling hMSCs and the source of hMSCs (e.g., bone marrow, adipose-derived, muscle-derived, umbilical cord blood, etc.) that may provide peculiarities to self-renewal, differentiation, and physiologic function that may differ from non-transformed native cells. Tissue engineering approaches to use hMSCs to repair bone defects utilize the growth of hMSCs on three-dimensional scaffolds that can either be a base on which hMSCs can attach and grow or as a means of sequestering growth factors to assist in the chemoattraction and differentiation of native hMSCs. The use of whole native extracellular matrix (ECM) produced by hMSCs, rather than individual ECM components, appear to be advantageous in not only being utilized as a three-dimensional attachment base but also in appropriate orientation of cells and their differentiation through the growth factors that native ECM harbor or in simulating growth factor motifs. The origin of native ECM, whether from hMSCs from young or old individuals is a critical factor in "rejuvenating" hMSCs from older individuals grown on ECM from younger individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999785PMC
http://dx.doi.org/10.4252/wjsc.v6.i2.94DOI Listing

Publication Analysis

Top Keywords

hmscs
13
mesenchymal stem
12
stem cells
8
critical mass
8
mass cells
8
cells ability
8
growth factors
8
native ecm
8
cells
7
bone
5

Similar Publications

Adequate hypothermic storage of human mesenchymal stem cells (hMSCs) is of fundamental importance since they have been explored in several regenerative medicine initiatives. However, the actual clinical application of hMSCs necessitates hypothermic storage for long periods, a process that requires the use of non-toxic and efficient cryo-reagents capable of maintaining high viability and differentiating properties after thawing. Current cryopreservation methods are based on cryoprotectant agents (CPAs) containing dimethylsulphoxide (DMSO), which have been shown to be toxic for clinical applications.

View Article and Find Full Text PDF

Human cells, such as fibroblasts and particularly human mesenchymal stem cells (hMSCs), represent a promising and effective therapeutic tool for a range of cell-based therapies used to treat various diseases. The effective delivery of therapeutic cells remains a challenge due to limitations in targeting, invasiveness, and cell viability. To address these challenges, we developed a microneedle (MN) system for minimally invasive cell delivery with high cellular stability.

View Article and Find Full Text PDF

Aims: The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis.

Methods: Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression.

View Article and Find Full Text PDF

Human stromal cell-based protocol to generate astrocytes: a straightforward predictive strategy in neurotoxicology.

Toxicol Mech Methods

December 2024

Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy.

The inherent adaptability of human mesenchymal stromal cells (hMSCs) to differentiate into neural lineages provides a valuable resource for investigating potential neurotoxicity in humans. By harnessing the ability of hMSCs to transform into astrocytes, we can evaluate the effects of various agents on these vital cells. Our protocol employs hMSCs sourced from umbilical cord tissue, ensuring a readily available supply of high-quality cells.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSCs) have therapeutic applications and potential for use in regenerative medicine. However, the use of hMSCs in research and clinical medicine is limited by a lack of information pertaining to their donor-specific functional attributes. In this study, we compared the characteristics of same-donor derived placenta (PL) and Wharton's jelly (WJ)-derived hMSCs, we also compared their mechanism of action in a skeletal muscle disease in vitro model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!