Cancer Vaccines in the World of Immune Suppressive Monocytes (CD14(+)HLA-DR(lo/neg) Cells): The Gateway to Improved Responses.

Front Immunol

Human Cellular Therapy Laboratory, Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN , USA.

Published: June 2014

Dendritic cells are an important target in cancer immunotherapy based on their critical role in antigen presentation and response to tumor development. The capacity of dendritic cells to stimulate anti-tumor immunity has led investigators to use these cells to mediate anti-tumor responses in a number of clinical trials. However, these trials have had mixed results. The typical method for generation of ex vivo dendritic cells starts with the purification of CD14(+) cells. Our studies identified a deficiency in the ability to generate mature dendritic cell using CD14(+) cells from cancer patients that corresponded with an increased population of monocytes with altered surface marker expression (CD14(+)HLA-DR(lo/neg)). Further studies identified systemic immune suppression and increased concentrations of CD14(+)HLA-DR(lo/neg) monocytes capable of inhibiting T-cell proliferation and DC maturation. Together, these findings strongly suggest that protocols aimed at immune stimulation via monocytes/dendritic cells, if optimized on normal monocytes or in systems without these suppressive monocytes, are unlikely to engender effective DC maturation in vitro or efficiently trigger DC maturation in vivo. This highlights the importance of developing optimal protocols for stimulating DCs in the context of significantly altered monocyte phenotypes often seen in cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983500PMC
http://dx.doi.org/10.3389/fimmu.2014.00147DOI Listing

Publication Analysis

Top Keywords

dendritic cells
12
suppressive monocytes
8
cells
8
cd14+ cells
8
studies identified
8
cancer patients
8
monocytes
5
cancer
4
cancer vaccines
4
vaccines immune
4

Similar Publications

Anaerobic probiotics-in situ Se nanoradiosensitizers selectively anchor to tumor with immuno-regulations for robust cancer radio-immunotherapy.

Biomaterials

January 2025

Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:

Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.

View Article and Find Full Text PDF

Cytosolic DNA composition is determined by genomic instability mechanism and regulates dendritic cell-mediated anti-tumor immunity.

Cell Rep

January 2025

Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada. Electronic address:

Patients with colorectal cancers (CRCs) that have microsatellite instability (MSI) (MSI CRCs) face a better prognosis than those with the more common chromosomal instability (CIN) subtype (CIN CRCs) due to improved T cell-mediated anti-tumor immune responses. Previous investigations identified the cytosolic DNA (cyDNA) sensor STING as necessary for chemokine-mediated T cell recruitment in MSI CRCs. Here, we find that cyDNA from MSI CRC cells is inherently more capable of inducing STING activation and improves cytotoxic T cell activation by dendritic cells (DCs).

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Tertiary Lymphoid Structures as a Biomarker in Immunotherapy and Beyond: Advancing Towards Clinical Application.

Cancer Lett

January 2025

. Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. Electronic address:

Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation.

View Article and Find Full Text PDF

Engineered extracellular vesicles for TGF-β encapsulation as a therapeutic strategy against LPS-induced systemic inflammation.

Int Immunopharmacol

January 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:

Inflammation underlies a wide variety of physiological and pathological processes, the Lipopolysaccharide (LPS)-induced inflammation model is widely recognized as a classical inflammatory paradigm, while Transforming growth factor-β (TGF-β) serves as a potent immunosuppressant capable of inhibiting immune responses and mitigating inflammation. However, its in vivo instability and the high cost associated with purification have imposed limitations on its clinical application. Therefore, we propose a therapeutic strategy for genetically modifying extracellular vesicles (HEVs) derived from HEK-293 T cells to incorporate TGF-β which holds potential for mitigating LPS-induced inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!