The recently developed alumina and Parylene C bi-layer encapsulation improved the lifetime of neural interfaces. Tip deinsulation of Utah electrode array based neural interfaces is challenging due to the complex 3D geometries and high aspect ratios of the devices. A three-step self-aligned process was developed for tip deinsulation of bilayer encapsulated arrays. The deinsulation process utilizes laser ablation to remove Parylene C, O reactive ion etching to remove carbon and Parylene residues, and buffered oxide etch to remove alumina deposited by atomic layer deposition, and expose the IrO tip metallization. The deinsulated iridium oxide area was characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy to determine the morphology, surface morphology, composition, and electrical properties of the deposited layers and deinsulated tips. The alumina layer was found to prevent the formation of micro cracks on iridium oxide during the laser ablation process, which has been previously reported as a challenge for laser deinsulation of Parylene films. The charge injection capacity, charge storage capacity, and impedance of deinsulated iridium oxide were characterized to determine the deinsulation efficacy compared to Parylene-only insulation. Deinsulated iridium oxide with bilayer encapsulation had higher charge injection capacity (240 vs 320 nC) and similar electrochemical impedance (2.5 vs 2.5 kΩ) compared to deinsulated iridium oxide with only Parylene coating for an area of 2 × 10 cm. Tip impedances were in the ranges of 20 to 50 kΩ, with median of 32 KΩ and standard deviation of 30 kΩ, showing the effectiveness of the self-aligned deinsulation process for alumina and Parylene C bi-layer encapsulation. The relatively uniform tip impedance values demonstrated the consistency of tip exposures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994722 | PMC |
http://dx.doi.org/10.1088/0960-1317/24/3/035003 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China.
Resolving the atomic surface structure, particularly surface termination or reconstruction, is essential for understanding the catalytic properties of metal oxides. Although rutile phase iridium dioxide (IrO) is the state-of-the-art electrocatalyst for the oxygen evolution reaction (OER) in water splitting, the atomic-level surface structures of IrO remain largely unexplored, limiting our understanding of its facet-dependent OER activities. Herein, we perform aberration-corrected integrated differential phase contrast scanning transmission electron microscopy of the low- and high-index surface structures of spindle-shaped IrO nanorods and reveal distinct surface terminations and/or reconstructions on different surfaces.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
Developing durable IrO-based electrocatalysts with high oxygen evolution reaction (OER) activity under acidic condition is crucial for proton exchange membrane electrolyzers. While oxygen defects are considered potentially important in OER, their direct relationship with catalytic activity has yet to be established. In this study, we introduced abundant oxygen vacancies through Re doping in 2D IrO (ReIrO), demonstrating their decisive role in enhancing OER performance.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China.
Anodic oxygen evolution reaction (OER) exhibits a sluggish four-electron transfer process, necessitating catalysts with exceptional catalytic activity to enhance its kinetic rate. Van der Waals layered oxides are ideal materials for catalyst design, yet its stability for acidic OER remains large obstacle. Doping provides a crucial way to improve the activity and stability simultaneously.
View Article and Find Full Text PDFScience
January 2025
School of Chemical Engineering, Sichuan University, Chengdu, China.
The iridium oxide (IrO) catalyst for the oxygen evolution reaction used industrially (in proton exchange membrane water electrolyzers) is scarce and costly. Although ruthenium oxide (RuO) is a promising alternative, its poor stability has hindered practical application. We used well-defined extended surface models to identify that RuO undergoes structure-dependent corrosion that causes Ru dissolution.
View Article and Find Full Text PDFSmall
December 2024
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.
Ruthenium oxide (RuO) is considered one of the most promising catalysts for replacing iridium oxide (IrO) in the acidic oxygen evolution reaction (OER). Nevertheless, the performance of RuO remains unacceptable due to the dissolution of Ru and the lack of *OH in acidic environments. This paper reports a grain boundary (GB)-rich porous RuO electrocatalyst for the efficient and stable acidic OER.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!