RegPhos 2.0: an updated resource to explore protein kinase-substrate phosphorylation networks in mammals.

Database (Oxford)

Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan.

Published: October 2014

Protein phosphorylation catalyzed by kinases plays crucial roles in regulating a variety of intracellular processes. Owing to an increasing number of in vivo phosphorylation sites that have been identified by mass spectrometry (MS)-based proteomics, the RegPhos, available online at http://csb.cse.yzu.edu.tw/RegPhos2/, was developed to explore protein phosphorylation networks in human. In this update, we not only enhance the data content in human but also investigate kinase-substrate phosphorylation networks in mouse and rat. The experimentally validated phosphorylation sites as well as their catalytic kinases were extracted from public resources, and MS/MS phosphopeptides were manually curated from research articles. RegPhos 2.0 aims to provide a more comprehensive view of intracellular signaling networks by integrating the information of metabolic pathways and protein-protein interactions. A case study shows that analyzing the phosphoproteome profile of time-dependent cell activation obtained from Liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the RegPhos deciphered not only the consistent scheme in B cell receptor (BCR) signaling pathway but also novel regulatory molecules that may involve in it. With an attempt to help users efficiently identify the candidate biomarkers in cancers, 30 microarray experiments, including 39 cancerous versus normal cells, were analyzed for detecting cancer-specific expressed genes coding for kinases and their substrates. Furthermore, this update features an improved web interface to facilitate convenient access to the exploration of phosphorylation networks for a group of genes/proteins. Database URL: http://csb.cse.yzu.edu.tw/RegPhos2/

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999940PMC
http://dx.doi.org/10.1093/database/bau034DOI Listing

Publication Analysis

Top Keywords

phosphorylation networks
16
explore protein
8
kinase-substrate phosphorylation
8
protein phosphorylation
8
phosphorylation sites
8
phosphorylation
7
networks
5
regphos
4
regphos updated
4
updated resource
4

Similar Publications

Bisphenol A-Induced Cancer-Associated Adipocytes Promotes Breast Carcinogenesis Via CXCL12/AKT Signaling.

Mol Cell Endocrinol

January 2025

Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.

View Article and Find Full Text PDF

Introduction: Autism spectrum disorder (ASD) represents a multifaceted set of neurodevelopmental conditions marked by social deficits and repetitive behaviors. Astragaloside IV (ASIV), a natural compound derived from the traditional Chinese herb Astragali Radix, exhibits robust neuroprotective effects. However, whether ASIV can ameliorate behavioral deficits in ASD remains unknown.

View Article and Find Full Text PDF

: Gegen Qinlian Decoction (GQD), is used for intestinal disorders like ulcerative colitis, irritable bowel syndrome, and colorectal cancer. But the precise mechanisms underlying its anti-inflammatory and anti-tumor effects are not fully elucidated. : Use network pharmacology to identify targets and pathways of GQD.

View Article and Find Full Text PDF

Androgen-indifferent prostate cancer (AIPC) is increasingly common and particularly lethal. Data describing these tumors are sparse, and AIPC remains a poorly understood malignancy. Utilizing the Oncology Research Information Exchange Network (ORIEN) database, we enriched for tumors with features of AIPC using previously described characteristics.

View Article and Find Full Text PDF

Peanut ( L.) is one of the most important crops for oil and protein production. The unique characteristic of peanut is geocarpy, which means that it blooms aerially and the peanut gynophores (pegs) penetrate into the soil, driving the fruit underground.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!