The present study was conducted to investigate the correlation between motor function and axonal morphology in neonatally sciatic nerve-injured rats. The left sciatic nerve of newborn rats was transected or crushed, and functionality of the sciatic nerve was assessed by the static sciatic index after 8 weeks. After functional assessment, the common peroneal nerves in the control, nerve-transected, and nerve-crushed rats were removed and prepared for morphometric examinations. The cross-sectional area of the nerve, total number of myelinated axons, and size of each myelinated axon were analyzed for each group. The control rats showed normal motor function, whereas the nerve-transected rats showed severe motor dysfunction. The cross-sectional area of the nerve and total number of myelinated axons were reduced after nerve transection. Moreover, the percentage per size class of myelinated axons was almost uniform in the control rats, while the distribution was shifted to the left in the nerve-transected rats. Furthermore, no large myelinated axons were observed in the nerve-transected rats. The nerve-crushed rats showed various gait functions with various distribution patterns of axonal size, and the rats were divided into two groups with and without uninjured residual large axons. The results showed that the importance of regenerated medium-sized axons in cases without large axons and of residual large axons in cases with large axons in motor function. It was revealed that motor function was related closely to axonal size in neonatally nerve-injured rats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12565-014-0236-zDOI Listing

Publication Analysis

Top Keywords

motor function
20
myelinated axons
16
large axons
16
rats
12
nerve-injured rats
12
nerve-transected rats
12
axons
9
correlation motor
8
function axonal
8
axonal morphology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!