While extensive data demonstrated that plerixafor improves stem cell harvest in difficult-to-mobilize patients, economic concerns limit a broader application. We retrospectively assessed the effect of an early plerixafor rescue regimen for mobilization in patients with multiple myeloma. Patients were intended for high-dose chemotherapy followed by autologous peripheral blood stem cell transplantation (ABSCT) and therefore received cyclophosphamide-based mobilization chemotherapy and consecutive stimulation with granulocyte colony-stimulating factor (G-CSF). Fifteen patients with poor stem cell harvest in the first leukapheresis session received plerixafor. Data were compared with a matched historic control group of 45 patients who also had a poor stem cell yield in the first apheresis session, but continued mobilization with G-CSF alone. Patients in the plerixafor group collected significantly more CD34+ cells in total (median 4.9 vs. 3.7 [range 1.6-14.1 vs. 1.1-8.0] × 10(6) CD34+ cells /kg bw; P < 0.05), and also more CD34+ cells per leukapheresis procedure (P < 0.001). Consequently, they required a significantly lower number of leukapheresis procedures to achieve the collection goal (median 2.0 vs. 4.0 [range 2-3 vs. 2-9] procedures; P < 0.001). The efficiency of the collected stem cells in terms of hematologic engraftment after ABSCT was found to be equal in both groups. These data demonstrate that rescue mobilization with plerixafor triggered by a low stem cell yield in the first leukapheresis session is effective. Although the actual economic benefit may vary depending on the local leukapheresis costs, the median saving of two leukapheresis procedures offsets most of the expenses for the substance in this setting. An exemplary cost calculation is provided to illustrate this effect.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jca.21323DOI Listing

Publication Analysis

Top Keywords

stem cell
20
patients multiple
8
multiple myeloma
8
cell harvest
8
patients poor
8
poor stem
8
cd34+ cells
8
patients
7
cell
5
plerixafor
5

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.

Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.

View Article and Find Full Text PDF

Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).

Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!