Unstable flow structures in the Blasius boundary layer.

Eur Phys J E Soft Matter

Department of Civil, Chemical and Environmental Engineering, University of Genova, Via Montallegro 1, 16145, Genova, Italy,

Published: April 2014

Finite amplitude coherent structures with a reflection symmetry in the spanwise direction of a parallel boundary layer flow are reported together with a preliminary analysis of their stability. The search for the solutions is based on the self-sustaining process originally described by Waleffe (Phys. Fluids 9, 883 (1997)). This requires adding a body force to the Navier-Stokes equations; to locate a relevant nonlinear solution it is necessary to perform a continuation in the nonlinear regime and parameter space in order to render the body force of vanishing amplitude. Some states computed display a spanwise spacing between streaks of the same length scale as turbulence flow structures observed in experiments (S.K. Robinson, Ann. Rev. Fluid Mech. 23, 601 (1991)), and are found to be situated within the buffer layer. The exact coherent structures are unstable to small amplitude perturbations and thus may be part of a set of unstable nonlinear states of possible use to describe the turbulent transition. The nonlinear solutions survive down to a displacement thickness Reynolds number Re * = 496 , displaying a 4-vortex structure and an amplitude of the streamwise root-mean-square velocity of 6% scaled with the free-stream velocity. At this Re* the exact coherent structure bifurcates supercritically and this is the point where the laminar Blasius flow starts to cohabit the phase space with alternative simple exact solutions of the Navier-Stokes equations.

Download full-text PDF

Source
http://dx.doi.org/10.1140/epje/i2014-14034-1DOI Listing

Publication Analysis

Top Keywords

flow structures
8
boundary layer
8
coherent structures
8
body force
8
navier-stokes equations
8
exact coherent
8
unstable flow
4
structures
4
structures blasius
4
blasius boundary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!