It has been described that A disintegrin and metalloproteinase (ADAM10) may involve in the physiopathology of prion diseases, but the direct molecular basis still remains unsolved. In this study, we confirmed that ADAM10 was able to cleave recombinant human prion protein in vitro. Using immunoprecipitation tests (IP) and immunofluorescent assays (IFA), reliable molecular interaction between the native cellular form of PrP (PrP(C)) and ADAM10 was observed not only in various cultured neuronal cell lines but also in brain homogenates of healthy hamsters and mice. Only mature ADAM10 (after removal of its prodomain) molecules showed the binding activity with the native PrP(C). Remarkably more prion protein (PrP)-ADAM10 complexes were detected in the membrane fraction of cultured cells. In the scrapie-infected SMB cell model, the endogenous ADAM10 levels, especially the mature ADAM10, were significantly decreased in the fraction of cell membrane. IP and IFA tests of prion-infected SMB-S15 cells confirmed no detectable PrP-ADAM10 complex in the cellular lysates and PrP-ADAM10 co-localization on the cell surface. Furthermore, we demonstrated that the levels of ADAM10 in the brain homogenates of scrapie agent 263K-infected hamsters and agent ME7-infected mice were also almost diminished at the terminal stage, showing time-dependent decreases during the incubation period. Our data here provide the solid molecular basis for the endoproteolysis of ADAM10 on PrP molecules and interaction between ADAM10 and PrP(C). Obvious loss of ADAM10 during prion infection in vitro and in vivo highlights that ADAM10 may play essential pathophysiological roles in prion replication and accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-014-8708-7 | DOI Listing |
Acta Neuropathol
January 2025
Department of Clinical Sciences, Lund Brain Injury Laboratory for Neurosurgical Research, Lund University, 222 20, Lund, Sweden.
Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, P. R. China.
MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy.
Malignant melanoma represents the fifth most common cancer in the world and its incidence is rising. Novel therapies targeting receptor tyrosine kinases, kinases and immune checkpoints have been employed with a significant improvement of the overall survival and long-term disease containment. Nevertheless, the disease often progresses and becomes resistant to the therapies.
View Article and Find Full Text PDFImmunol Cell Biol
January 2025
Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and PekingUnion Medical College, Beijing, China.
Immunology
January 2025
Department of Dermatology, Weill Cornell Medicine, New York, New York, USA.
Calcitonin gene-related peptide (CGRP) biases Langerhans cell (LC) Ag presentation to CD4 T cells towards Th17-type immunity through actions on endothelial cells (ECs). We now report further evidence that IL-6 signalling at responding T cells mediates this effect. This CGRP effect was absent with ECs from IL-6 KO mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!