Evaluation of amphotericin B and chloramphenicol as alternative drugs for treatment of chytridiomycosis and their impacts on innate skin defenses.

Appl Environ Microbiol

Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA

Published: July 2014

Chytridiomycosis, an amphibian skin disease caused by the emerging fungal pathogen Batrachochytrium dendrobatidis, has been implicated in catastrophic global amphibian declines. The result is an alarming decrease in amphibian diversity that is a great concern for the scientific community. Clinical trials testing potential antifungal drugs are needed to identify alternative treatments for amphibians infected with this pathogen. In this study, we quantified the MICs of chloramphenicol (800 μg/ml), amphotericin B (0.8 to 1.6 μg/ml), and itraconazole (Sporanox) (20 ng/ml) against B. dendrobatidis. Both chloramphenicol and amphotericin B significantly reduced B. dendrobatidis infection in naturally infected southern leopard frogs (Rana [Lithobates] sphenocephala), although neither drug was capable of complete fungal clearance. Long-term exposure of R. sphenocephala to these drugs did not inhibit antimicrobial peptide (AMP) synthesis, indicating that neither drug is detrimental to this important innate skin defense. However, we observed that chloramphenicol, but not amphotericin B or itraconazole, inhibited the growth of multiple R. sphenocephala skin bacterial isolates in vitro at concentrations below the MIC against B. dendrobatidis. These results indicate that treatment with chloramphenicol might dramatically alter the protective natural skin microbiome when used as an antifungal agent. This study represents the first examination of the effects of alternative antifungal drug treatments on amphibian innate skin defenses, a crucial step to validating these treatments for practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054225PMC
http://dx.doi.org/10.1128/AEM.04171-13DOI Listing

Publication Analysis

Top Keywords

innate skin
12
skin defenses
8
chloramphenicol amphotericin
8
skin
6
chloramphenicol
5
evaluation amphotericin
4
amphotericin chloramphenicol
4
chloramphenicol alternative
4
alternative drugs
4
drugs treatment
4

Similar Publications

Recombinant collagen microneedles for transdermal delivery of antibacterial copper-DNA nanoparticles to treat skin and soft tissue infections.

J Control Release

January 2025

School of Pharmacy, Changzhou University, Changzhou 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou 213164, PR China. Electronic address:

Skin and soft tissue infections (SSTI) include bacterial infections of the skin, muscles, and connective tissue such as ligaments and tendons. SSTI in patients with immunocompromising diseases may lead to chronic, hard-to-heal infected wounds, resulting in disability, amputation, or even death. To treat SSTI and rebuild the defensive barrier of the skin, here we utilize recombinant type XVII collagen protein (rCol XVII) to construct biodegradable, regenerative collagen microneedles (rCol-MN) for transdermal delivery of antibacterial agents.

View Article and Find Full Text PDF

Merkel cell carcinoma (MCC) is a skin cancer that arises due to either Merkel cell polyomavirus infection (MCPyV) or ultraviolet (UV) radiation exposure, presenting primarily in the head and neck region of fair-skinned males. The recent success of PD-(L)1 immune checkpoint inhibitors (ICIs) in locally advanced/metastatic MCC, with an objective response rate (ORR) around 50% and improved survival, as a first-line treatment has moved ICIs to the forefront of therapy for MCC and generated interest in identifying biomarkers to predict clinical response. The MCC tumour microenvironment (TME) contains various components of the adaptive and innate immune system.

View Article and Find Full Text PDF

Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Transcriptome of capsular contracture around breast implants mimics allograft rejection: a matched case-control study.

Plast Reconstr Surg

December 2024

Copenhagen University Hospital, Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen, Denmark.

Background: Capsular contracture is a frequent and severe complication following breast implant surgery. Although several theories on the pathophysiology exist, the exact molecular mechanisms remain unclear. This study aimed to identify the specific genes, signaling pathways, and immune cells associated with capsular contracture.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a prevalent, persistent inflammatory skin disorder distinguished by pruritic and irritated skin. Toll-like receptors (TLRs) are specialized receptors that recognize specific patterns associated with pathogens and tissue damage, triggering an innate immune response that protects the host from invading pathogens. Previously, it was demonstrated that intradermal injection of the humanized anti-TLR2 monoclonal antibody (Ab) Tomaralimab effectively relieved AD-like skin inflammation in BALB/c mouse models exposed to house dust mite extracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!