Background: Persea americana, commonly known as avocado, is traditionally consumed fruit which possesses body fat lowering capacity. Adiponectin plays an important role in regulating obesity. In this study, the effect of hydro-alcoholic fruit extract of P. americana (HAEPA) on the level of blood lipids, glutathione, lipid peroxidation products, adiponectin and peroxisome proliferator activated receptor (PPAR)-γ expressions was investigated in rats fed a high-fat diet (HFD).
Methods: Male Sprague Dawley rats were divided into four groups: groups 1 and 2 were fed normal rat chow (5% fat) and groups 3 and 4 were fed HFD (23% fat) for a period of 14 weeks. In addition, groups 2 and 4 rats were administered orally with 100 mg/kg body weight of HAEPA from third week. After 14 weeks, rats were sacrificed, and serum/plasma levels of total cholesterol, phospholipids, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and adiponectin were determined. The mRNA expression of adiponectin, PPAR-γ and protein expression of PPAR-γ were also evaluated.
Results: The body mass index (BMI), total fat pad mass and adiposity index were significantly decreased in HAEPA co-administered rats than in HFD-fed rats. The levels of LDL and lipid peroxides were significantly higher in HFD group than in HFD+HAEPA group. Levels of reduced glutathione, adiponectin, mRNA expression of adiponectin, PPAR-γ and protein expression of PPAR-γ were found to be increased in HFD+HAEPA group than in HFD group. The hypolipidemic effect of HAEPA is also evidenced by the histological observations in liver, heart and adipose tissue.
Conclusions: The results indicate that HAEPA exhibits hypolipidemic activity probably by increasing the mRNA expression of adiponectin and PPAR-γ, which reduce the risk of hyperlipidemia and obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/jcim-2013-0053 | DOI Listing |
J Adv Res
December 2024
Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China. Electronic address:
Introduction: Colonic fibrosis is a long-term complication of inflammatory bowel disease (IBD), often leading to functional impairment, intestinal obstruction, and surgery. Adiponectin (APN) is an adipokine derived from adipocytes that plays a pleiotropic role in fibrosis regulation, depending on tissue and cell type specific or disease context, but its role in colonic fibrosis remains unclear.
Objective: To explore the role and involved mechanism of APN in chronic colitis-associated colonic fibrosis.
Front Cell Dev Biol
December 2024
Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
Introduction: T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada; Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada; CancerCare Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada. Electronic address:
Glioblastoma (GB) is the most prevalent and aggressive primary brain tumor with fatal outcome due to a lack of effective treatments. We previously identified C1q-tumor necrosis factor-related protein 8 (CTRP8), a new member of the adiponectin family, as a novel agonist of the relaxin family peptide receptor 1 (RXFP1) and showed that the CTRP8-RXFP1 ligand-receptor system facilitates increased invasiveness and chemoresistance in GB cells. In the present study, we have investigated the role of the CTRP8-RXFP1 signaling axis in glioma progression using an orthotopic mouse model xenografted with human U251 glioma cells stably expressing CTRP8 and RXFP1.
View Article and Find Full Text PDFDiabetologia
December 2024
The Biostatistics Center, George Washington University, Rockville, MD, USA.
Aims/hypothesis: Insulin resistance and compensatory hyperinsulinaemia are core features leading to beta cell failure in youth-onset type 2 diabetes. Insulin clearance (IC) is also a key regulator of insulin concentrations, but few data exist on IC in youth-onset type 2 diabetes. In a secondary analysis of our Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) randomised clinical trial, we investigated potential sex-, race-, ethnicity- and treatment-related differences in IC in youth-onset type 2 diabetes and aimed to identify metabolic phenotypes associated with IC at baseline and in response to metformin, metformin plus a lifestyle intervention, and metformin plus rosiglitazone.
View Article and Find Full Text PDFFood Funct
December 2024
Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
Widespread exposure to endocrine disruptors is associated with metabolic dysfunction and reproductive toxicity. Tetrahydrocurcumin (THC) has attracted attention as it offers protection against obesity and metabolic disorders due to its potent antioxidative and diverse biological properties but its influence and underlying mechanism of action on adipose tissue function and DEHP-induced testicular injury remain unknown. Our results showed that THC (100 mg kg day) administration for 27 weeks enlarged adipocytes while attenuating macrophage infiltration and IL-6 expression in the adipose tissue of male C57BL/6J mice exposed to 5 mg kg day of DEHP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!