Sexual reproduction and seasonality of the Alaskan red tree coral, Primnoa pacifica.

PLoS One

Alaska Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, Alaska, United States of America.

Published: January 2015

The red tree coral Primnoa pacifica is an important habitat forming octocoral in North Pacific waters. Given the prominence of this species in shelf and upper slope areas of the Gulf of Alaska where fishing disturbance can be high, it may be able to sustain healthy populations through adaptive reproductive processes. This study was designed to test this hypothesis, examining reproductive mode, seasonality and fecundity in both undamaged and simulated damaged colonies over the course of 16 months using a deepwater-emerged population in Tracy Arm Fjord. Females within the population developed asynchronously, though males showed trends of synchronicity, with production of immature spermatocysts heightened in December/January and maturation of gametes in the fall months. Periodicity of individuals varied from a single year reproductive event to some individuals taking more than the 16 months sampled to produce viable gametes. Multiple stages of gametes occurred in polyps of the same colony during most sampling periods. Mean oocyte size ranged from 50 to 200 µm in any season, and maximum oocyte size (802 µm) suggests a lecithotrophic larva. No brooding larvae were found during this study, though unfertilized oocytes were found adhered to the outside of polyps, where they are presumably fertilized. This species demonstrated size-dependent reproduction, with gametes first forming in colonies over 42-cm length, and steady oocyte sizes being achieved after reaching 80-cm in length. The average fecundity was 86 (± 12) total oocytes per polyp, and 17 (± 12) potential per polyp fecundity. Sub-lethal injury by removing 21-40% of colony tissue had no significant reproductive response in males or females over the course of this study, except for a corresponding loss in overall colony fecundity. The reproductive patterns and long gamete generation times observed in this study indicate that recruitment events are likely to be highly sporadic in this species increasing its vulnerability to anthropogenic disturbances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000209PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090893PLOS

Publication Analysis

Top Keywords

red tree
8
tree coral
8
coral primnoa
8
primnoa pacifica
8
oocyte size
8
reproductive
5
sexual reproduction
4
reproduction seasonality
4
seasonality alaskan
4
alaskan red
4

Similar Publications

Background: Sepsis is a life-threatening disease associated with a high mortality rate, emphasizing the need for the exploration of novel models to predict the prognosis of this patient population. This study compared the performance of traditional logistic regression and machine learning models in predicting adult sepsis mortality.

Objective: To develop an optimum model for predicting the mortality of adult sepsis patients based on comparing traditional logistic regression and machine learning methodology.

View Article and Find Full Text PDF

Disocatus ackermannii, commonly referred to as Orchid Cactus, is a striking succulent belonging to the Cactaceae family. Its unique appearance and captivating characteristics make it a sought-after addition to gardens and courtyards beautification. In June 2023, 20-30% of D.

View Article and Find Full Text PDF

The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.

View Article and Find Full Text PDF

Inhibitory effect of bioactive compounds from quinoa of different colors on the in vitro digestibility of starch.

Int J Biol Macromol

January 2025

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China. Electronic address:

This study aimed to compare the bioactive compounds presented in quinoa of various colors, and investigated their inhibitory effect on α-glucosidase activity and the in vitro digestibility of starch. The primary bioactive compounds identified in quinoa included betaine and polyphenols (kaempferol, quercetin, rutin, etc.), with their contents increased as the color of quinoa darkened.

View Article and Find Full Text PDF

Large-scale and long-term wildlife research and monitoring using camera traps: a continental synthesis.

Biol Rev Camb Philos Soc

January 2025

Wildlife Observatory of Australia (WildObs), Queensland Cyber Infrastructure Foundation (QCIF), Brisbane, Queensland, 4072, Australia.

Camera traps are widely used in wildlife research and monitoring, so it is imperative to understand their strengths, limitations, and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012-2022) with a case study on Australian terrestrial vertebrates using a multifaceted approach. We (i) synthesised information from a literature review; (ii) conducted an online questionnaire of 132 professionals; (iii) hosted an in-person workshop of 28 leading experts representing academia, non-governmental organisations (NGOs), and government; and (iv) mapped camera trap usage based on all sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!