The first systematic electronic resolution study of a series of urea-based anion receptor complexes is presented. The hydrogen bonding in these multi-component systems was fully characterised using Bader's Quantum Theory of Atoms In Molecules (QTAIM) with the strength of the various N-H···anion hydrogen bonds quantified and the individual contributions of different intermolecular forces to the overall receptor: anion interaction derived by comparison of the charge densities in the related complexes. The strength of the N-Hanion hydrogen bonds was correlated to the basicity of the anion and related to the structure of the receptors. The geometric criteria used to identify hydrogen bonding interactions in standard resolution X-ray diffraction studies were shown to be valid for stronger interactions. However, these geometric criteria are less reliable and lead to assumptions that are not necessarily upheld when applied to weaker intermolecular interactions. The presence of these could only be confirmed by charge density studies. The effect that changes to the receptor substitution pattern have on the entire supramolecular system is illustrated by the differences in the electrostatic potential distributions and atomic charges across the series. The application of systematic high resolution studies to rationalise a variety of host-guest systems has been demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp54858aDOI Listing

Publication Analysis

Top Keywords

charge density
8
anion receptor
8
receptor complexes
8
hydrogen bonding
8
hydrogen bonds
8
geometric criteria
8
systematic experimental
4
experimental charge
4
density analysis
4
anion
4

Similar Publications

All-solid-state fluoride-ion batteries (FIBs) have attracted extensive attention as candidates for next-generation energy storage devices; however, promising cathodes with high energy density are still lacking. In this study, CuN is investigated as a cathode material for all-solid-state fluoride-ion batteries, which offers enough anionic vacancies around the 2-fold coordinated Cu center for F intercalation, thereby enabling a multielectron-transferred fluorination process. The contribution of both cationic and anionic redox to charge compensation, in particular, the generation of molecular nitrogen species in highly charged states, has been proved by several synchrotron-radiation-based spectroscopic technologies.

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

The design of interfaces between nanostructured electrodes and advanced electrolytes is critical for realizing advanced electrochemical double-layer capacitors (EDLCs) that combine high charge-storage capacity, high-rate capability, and enhanced safety. Toward this goal, this work presents a novel and sustainable approach for fabricating ionogel-based electrodes using a renewed slurry casting method, in which the solvent is replaced by the ionic liquid (IL), namely 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI). This method avoids time-consuming and costly electrolyte-filling steps by integrating the IL directly into the electrode during slurry preparation, while improving the rate capability of EDLCs based on non-flammable ILs.

View Article and Find Full Text PDF

A mononuclear iron(II) complex constructed using a complementary ligand pair exhibits intrinsic luminescence-spin-crossover coupling.

Dalton Trans

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.

Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).

View Article and Find Full Text PDF

Based on the bidirectional electromigration (BIEM) technique, a corrosion inhibitor solution was prepared by mixing 1 mol/L triethylene tetramine with deionized water. The effects of current density, charging time, and corrosion inhibitor on critical current density and hydrogen content of rebar were investigated. Subsequently, the hydrogen embrittlement risk of rebar was further characterized by mechanical property tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!