A molecular link between distinct neuronal asymmetries.

Cell Cycle

Division of Developmental Biology; Cincinnati Children's Hospital Research Foundation; Cincinnati, OH USA; Department of Biological Sciences; University of Illinois, Chicago; Chicago, IL USA.

Published: February 2016

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050152PMC
http://dx.doi.org/10.4161/cc.29010DOI Listing

Publication Analysis

Top Keywords

molecular link
4
link distinct
4
distinct neuronal
4
neuronal asymmetries
4
molecular
1
distinct
1
neuronal
1
asymmetries
1

Similar Publications

The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.

View Article and Find Full Text PDF

From trade-off to synergy: how nutrient status modulates plant resistance to herbivorous insects?

Adv Biotechnol (Singap)

October 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.

The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.

View Article and Find Full Text PDF

Linking the function of -acting RNA elements to coronavirus replication using interactomes.

J Gen Virol

January 2025

Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC.

RNA structures that are functionally important are defined as -acting RNA elements because their functions cannot be compensated for in trans. The -acting RNA elements in the 3' UTR of coronaviruses are important for replication; however, the mechanism linking the -acting RNA elements to their replication function remains to be established. In the present study, a comparison of the biological processes of the interactome and the replication efficiency between the 3' UTR -acting RNA elements in coronaviruses, including severe acute respiratory syndrome coronavirus 2, suggests that (i) the biological processes, including translation, protein folding and protein stabilization, derived from the analysis of the -acting RNA element interactome and (ii) the architecture of the -acting RNA elements and their interactomes are highly correlated with coronavirus replication.

View Article and Find Full Text PDF

Unlabelled: Mutations affecting flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving , , and , which creates a feedback system to regulate flagella production. Through genomic analysis of clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene and regulatory gene .

View Article and Find Full Text PDF

A Framework for Assessing Viral Pathogens: A Key Element of the BARDA Emerging Infectious Diseases Strategy.

Health Secur

January 2025

Richard C. White, PhD, is an Interdisciplinary Scientist, Medical Countermeasures Program; Peter L. Adams, PhD, and Karl J. Erlandson, PhD, are Interdisciplinary Scientists, and Ramya Natarajan, PhD, is a Health Scientist, Influenza and Emerging Infectious Diseases Division; Kyla A. Britson, PhD, Rushyannah Killens-Cade, PhD, and Malen A. Link, PhD, are Interdisciplinary Scientists, and Daniel N. Wolfe, PhD, is Deputy Director, Division of Chemical, Biological, Radiological, and Nuclear (CBRN) Countermeasures; Derek L. Eisnor, MD, is a Medical Officer, Division of Clinical Development; Brenda L. Fredericksen, PhD, is Program Director, Nonclinical Research Program, and James Little, MS, is a Senior Scientific Advisor, Division of Nonclinical Development; John S. Lee, PhD, is Program Director, Molecular Diagnostics Program, and Julie M. Villanueva, PhD, is a Scientific Advisor, Detection, Diagnostics, and Devices Infrastructure Division; Kimberly L. Sciarretta, PhD, is Program Director, Launch Office, Division of Research, Innovation, and Ventures; and Robert A. Johnson, PhD, is Director, Medical Countermeasures Program; all at the Biomedical Advanced Research and Development Authority, Washington, DC. Gerald R. Kovacs, PhD, is a Senior Advisor; Huyen Cao, MD, is a Senior Clinical Studies Analyst; Christopher Dale, PhD, and Mark Michalik, MBA, are Senior Subject Matter Experts; Mario H. Skiadopoulos, PhD, is a Preclinical Drug Development Subject Matter Expert; and Xiaomi Tong, PhD, is a Senior Regulatory Affairs Subject Matter Expert; all at Tunnell Government Services, Berwyn, PA. Suchismita Chandran, PhD, is a Lead Associate, and Michael Rowe, MS, is a Senior Consultant; both at Booz Allen Hamilton, McLean, VA. Ethan J. Fritch, PhD, is an ORISE Fellow, Oak Ridge Institute for Science and Education, Oak Ridge, TN. George Robertson, PhD, is Chief Scientific Officer, Cambra Consulting, Inc., Woodbridge, VA.

The COVID-19 pandemic has revealed the need for nations to prepare more effectively for emerging infectious diseases. Preparing for these threats requires a multifaceted approach that includes assessing pathogen threat, building flexible capabilities for rapid medical countermeasure (MCM) development, and exercising, maintaining, and improving those response capabilities. The Biomedical Advanced Research and Development Authority (BARDA) promotes the advanced development of MCMs in response to natural and manmade threats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!