Bla g 4 is a male cockroach specific protein and is one of the major allergens produced by Blattella germanica (German cockroach). This protein belongs to the lipocalin family that comprises a set of proteins that characteristically bind small hydrophobic molecules and play a role in a number of processes such as: retinoid and pheromone transport, prostaglandin synthesis and mammalian immune response. Using NMR and isothermal titration calorimetry we demonstrated that Bla g 4 binds tyramine and octopamine in solution. In addition, crystal structure analysis of the complex revealed details of tyramine binding. As tyramine and octopamine play important roles in invertebrates, and are counterparts to vertebrate adrenergic transmitters, we speculate that these molecules are physiological ligands for Bla g 4. The nature of binding these ligands to Bla g 4 sheds light on the possible biological function of the protein. In addition, we performed a large-scale analysis of Bla g 4 and Per a 4 (an allergen from American cockroach) homologs to get insights into the function of these proteins. This analysis together with a structural comparison of Blag 4 and Per a 4 suggests that these proteins may play different roles and most likely bind different ligands. Accession numbers: The atomic coordinates and the structure factors have been deposited to the Protein Data Band under accession codes: 4N7C for native Bla g 4 and 4N7D for the Se-Met Bla g 4 structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097008PMC
http://dx.doi.org/10.1016/j.molimm.2014.03.016DOI Listing

Publication Analysis

Top Keywords

tyramine octopamine
12
bla
8
bla binds
8
binds tyramine
8
play roles
8
ligands bla
8
major cockroach
4
cockroach allergen
4
allergen bla
4
tyramine
4

Similar Publications

Ca excitability of glia to neuromodulator octopamine in Drosophila living brain is greater than that of neurons.

Acta Physiol (Oxf)

February 2025

Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.

Aim: Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive.

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

The brain must guide immediate responses to beneficial and harmful stimuli while simultaneously writing memories for future reference. While both immediate actions and reinforcement learning are instructed by dopamine, how dopaminergic systems maintain coherence between these 2 reward functions is unknown. Through optogenetic activation experiments, we showed that the dopamine neurons that inform olfactory memory in Drosophila have a distinct, parallel function driving attraction and aversion (valence).

View Article and Find Full Text PDF

An antagonist of the neurotransmitter tyramine inhibits the hyperactivating effect of eugenol in the blood-sucking bug, Triatoma infestans.

Acta Trop

December 2024

Centro de Investigaciones de Plagas e Insecticidas (UNIDEF-CITEDEF-CONICET-CIPEIN y Ministerio de Defensa), Juan B. de La Salle 4397, (B1603ALO) Villa Martelli, Buenos Aires, Argentina; Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín (UNSAM), (B1650HMQ) San Martín, Buenos Aires, Argentina.

Eugenol is a botanical monoterpene found in the essential oils of several aromatic plants. It has shown to have insecticidal activity, modify insect behavior, and its site of action is most probably in the octopaminergic system. The aim of the present study was to explore whether tyramine receptors are involved in the hyperactivity produced by eugenol in Triatoma infestans, one of the main vectors of Chagas disease.

View Article and Find Full Text PDF

A neurotransmitter atlas of males and hermaphrodites.

Elife

October 2024

Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States.

Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!