NCOA1 Directly Targets M-CSF1 Expression to Promote Breast Cancer Metastasis.

Cancer Res

Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine; Institute for Cancer Medicine and Department of Pathology, Luzhou Medical College, Luzhou, Sichuan, China; and

Published: July 2014

In breast cancer, overexpression of the nuclear coactivator NCOA1 (SRC-1) is associated with disease recurrence and resistance to endocrine therapy. To examine the impact of NCOA1 overexpression on morphogenesis and carcinogenesis in the mammary gland (MG), we generated MMTV-hNCOA1 transgenic [Tg(NCOA1)] mice. In the context of two distinct transgenic models of breast cancer, NCOA1 overexpression did not affect the morphology or tumor-forming capability of MG epithelial cells. However, NCOA1 overexpression increased the number of circulating breast cancer cells and the efficiency of lung metastasis. Mechanistic investigations showed that NCOA1 and c-Fos were recruited to a functional AP-1 site in the macrophage attractant CSF1 promoter, directly upregulating colony-simulating factor 1 (CSF1) expression to enhance macrophage recruitment and metastasis. Conversely, silencing NCOA1 reduced CSF1 expression and decreased macrophage recruitment and breast cancer cell metastasis. In a cohort of 453 human breast tumors, NCOA1 and CSF1 levels correlated positively with disease recurrence, higher tumor grade, and poor prognosis. Together, our results define an NCOA1/AP-1/CSF1 regulatory axis that promotes breast cancer metastasis, offering a novel therapeutic target for impeding this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083628PMC
http://dx.doi.org/10.1158/0008-5472.CAN-13-2639DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
ncoa1 overexpression
12
ncoa1
8
cancer metastasis
8
disease recurrence
8
csf1 expression
8
macrophage recruitment
8
breast
7
cancer
6
metastasis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!