A new pyrene-based Schiff-base: a selective colorimetric and fluorescent chemosensor for detection of Cu(II) and Fe(III).

Spectrochim Acta A Mol Biomol Spectrosc

Department of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist, Taichung City 43301, Taiwan. Electronic address:

Published: September 2014

A new receptor 1 was prepared, for the detection of Cu2+ and Fe3+ in solutions as a colorimetric and fluorescent sensor, respectively. Receptor 1 shows highly selective and sensitive recognition toward Cu2+ and Fe3+ by naked eye UV-Vis and fluorescent color changes in aqueous solution (DMSO/H2O=8/2, v/v), respectively. The sensitivity toward Cu2+ or Fe3+ was not interfered with by the presence of other metal ions such as Mg2+, Cd2+, Ag+, Zn2+, Ni2+, Co2+, Mn2+, Cr3+, Ca2+, Na+, Pb2+, K+, Fe2+, Li+ and Hg2+ ions. Receptor 1 can be used for semi-quantitative recognition of Cu2+ ions at ppm level. The fluorescence microscopy experiments showed that the receptor is efficient for detection of Fe3+ in vitro, developing a good image of the biological organelles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.03.110DOI Listing

Publication Analysis

Top Keywords

cu2+ fe3+
12
colorimetric fluorescent
8
recognition cu2+
8
pyrene-based schiff-base
4
schiff-base selective
4
selective colorimetric
4
fluorescent chemosensor
4
chemosensor detection
4
detection cuii
4
cuii feiii
4

Similar Publications

Cloning, purification and characterization of a novel thermostable recombinant tannase from Galactobacillus timonensis.

Enzyme Microb Technol

December 2024

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China.

The exorbitant production costs associated with natural tannases pose a significant challenge to their widespread industrial utilization. Microbial expression systems provide a cost-effective method for enzyme production. In this study, a putative gene encoding the subtype B tannase (Gt-Tan) was cloned from Galactobacillus timonensis and expressed heterologously in Escherichia coli BL21 (DE3) cells.

View Article and Find Full Text PDF

A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.

View Article and Find Full Text PDF

Toward a Machine Learning Approach to Interpreting X-ray Spectra of Trace Impurities by Converting XANES to EXAFS.

J Phys Chem A

December 2024

Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

The fact that the photoabsorption spectrum of a material contains information about the atomic structure, commonly understood in terms of multiple scattering theory, is the basis of the popular extended X-ray absorption spectroscopy (EXAFS) technique. How much of the same structural information is present in other complementary spectroscopic signals is not obvious. Here we use a machine learning approach to demonstrate that within theoretical models that accurately predict the EXAFS signal, the extended near-edge region does indeed contain the EXAFS-accessible structural information.

View Article and Find Full Text PDF

Heavy metal ions are major contributors to water pollution, posing significant threats to both ecological balance and human health due to their carcinogenic properties. The increasing need for heavy metal detection highlights the advantages of electrochemical methods, which offer high sensitivity and efficiency. Herein mesoporous nitrogen containing carbon (MNC) was utilized for the simultaneous determination of heavy metals using square wave voltammetry technique in the established conditions of a buffer pH of 5.

View Article and Find Full Text PDF

PDA/PMMA blend membrane utilized for the selective adsorption and separation of heavy metal ions.

Chemistry

December 2024

Central China Normal University, Key Laboratory of Pesticide & Chemical Biology CCNU , Ministry of Education;, 152#, luoyu road, 430079, Wuhan, CHINA.

The detrimental effects of heavy metal aqueous pollution are attracting people's attention increasingly. Membrane separation technology plays a pivotal role in the treatment of aqueous pollution due to its low energy consumption and excellent separation effect. Inspired by the strong adhesion of heavy metal ions by the dopamine in mussel protein, we have fabricated the 5%, 10%, 20% and 30% proportion of polydopamine (PDA)/Polymethyl methacrylate (PMMA) blend membranes with dopamine structure by solvent-induced phase conversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!