DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2014.03.061DOI Listing

Publication Analysis

Top Keywords

5-ht4 receptor
32
colonic transit
16
receptor agonist
12
receptor
11
da-6886
10
pharmacological profile
8
profile da-6886
8
5-ht4
8
novel 5-ht4
8
agonist accelerate
8

Similar Publications

Investigating the Mechanisms Involved in Scopolamine-induced Memory Degradation.

Arch Razi Inst

June 2024

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.

In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.

View Article and Find Full Text PDF
Article Synopsis
  • * An evaluation of 88 phytochemicals identified five (Genistein, Kaempferol, Daidzein, Peonidin, and glycitein) with strong pharmacokinetic properties and effective binding to serotonin receptors.
  • * The study suggests these phytochemicals, commonly found in soybeans and various plants, could lead to natural depression treatments, but more research is needed to confirm their effectiveness in real-world applications.
View Article and Find Full Text PDF
Article Synopsis
  • Zuojin Pill (ZJP) is a traditional herbal remedy aimed at treating gastrointestinal disorders, and the study explores how it affects interstitial cells of Cajal (ICCs) and gut movement in mice.
  • The research found that ZJP depolarizes ICCs, reducing their pacemaker activity and affecting calcium signaling, which is crucial for normal GI motility; this process is influenced by specific receptor interactions and various signaling pathways.
  • Additionally, ZJP improved intestinal transit in mouse models of GI motility disorders and increased levels of key substances that promote gut movement, suggesting its potential as a therapeutic agent in digestive health.
View Article and Find Full Text PDF

Changes in hippocampal volume, 5-HT receptor binding, and verbal memory over the course of antidepressant treatment in major depressive disorder.

J Psychiatr Res

January 2025

Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

Article Synopsis
  • - Serotonin reuptake inhibitors may help boost memory and increase hippocampal volume in patients with Major Depressive Disorder (MDD), particularly through the involvement of the 5-HT4 receptor. - In a study with 91 patients, significant reductions in hippocampal volume were observed after 8 weeks of treatment, especially in those responding well to the antidepressant escitalopram. - The research indicated a negative relationship between 5-HT4 receptor binding and hippocampal volume in females, suggesting a complex interaction that needs further exploration to understand its impact on memory and brain plasticity in MDD.
View Article and Find Full Text PDF

Background: Functional constipation (FC) has been found as a chronic gastrointestinal disease that is commonly diagnosed in patients. However, patients have a low satisfaction level with the treatment of constipation drugs (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!