The 1,9-dimethyl-methylene blue (SERVA) has a very strong metachromatic reaction with sulphated mucopolysaccharides of mastocytes at pH = 1 (Tris-HCl buffer). This metachromasia is retained also at increasing pH (2.5-5), and is not affected either by the quality or by the concentration of the ions present (1/240 M Tris-HCl, and 0.2 M phosphate buffer). The smears do not need any special mounting medium, only Canada balsam. The metachromasia is preserved for a considerable length of time.

Download full-text PDF

Source

Publication Analysis

Top Keywords

19-dimethyl-methylene blue
8
mucopolysaccharides mastocytes
8
permanent metachromatic
4
metachromatic 19-dimethyl-methylene
4
blue acidic
4
acidic mucopolysaccharides
4
mastocytes 19-dimethyl-methylene
4
blue serva
4
serva strong
4
strong metachromatic
4

Similar Publications

Behavioral Profiling in Zebrafish Identifies Insecticide-Related Compounds.

J Agric Food Chem

January 2025

Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94158, United States.

Pesticides, including insecticides, are indispensable for large-scale agriculture. Modulating chloride ion channels has proven highly successful as a mode of action (MoA) for insect management. Identifying new ligands for these channels affords opportunities for the potential development of new insecticide products.

View Article and Find Full Text PDF

Copper-based halides have attracted significant attention due to their unique photophysical properties and diverse coordination configurations. However, enhancing water stability and modulating structural transitions in cuprous halide materials remain challenging. In this work, we successfully synthesized three copper(I) halides, (CHP)CuBr (L1, [CHP] = hexyltriphenylphosphonium), (CHP)CuBr (L2), and (CHP)CuI (L3), via solvent volatilization, demonstrating exceptional water stability even after 27 days of submersion.

View Article and Find Full Text PDF

Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.

View Article and Find Full Text PDF

Degradation of Methylene Blue by Ozone Oxidation Catalyzed by the Magnetic MnFeO@CoS Nanocomposite.

Langmuir

January 2025

CSSC Nanjing Lvzhou Environmental Protection Co., Ltd, Nanjing 210039, China.

In this study, the MnFeO@CoS magnetic nanocomposite was prepared by a two-step hydrothermal method and used to catalyze the ozone oxidation degradation of methylene blue. It was characterized by XRD, EDS, SEM, FT-IR, and XPS. The results showed that the introduction of CoS made MnFeO grow uniformly on CoS nanosheets, which effectively prevented the agglomeration of MnFeO.

View Article and Find Full Text PDF

Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury.

ACS Nano

January 2025

School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.

Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!