Alarin is a newly identified member of the galanin family of peptides. Galanin has been shown to exert regulatory effects on depression. Similar to galanin in distribution, alarin is also expressed in the medial amygdala and hypothalamus, i.e., regions interrelated with depression. However, it remains a puzzle whether alarin is involved in depression. Accordingly, we established the depression-like mouse model using behavioral tests to ascertain the possible involvement of alarin, with fluoxetine as a positive control. With the positive antidepressant-like effects of alarin, we further examined its relationship to HPA axis activity and brain-derived neurotrophic factor (BDNF) levels in different brain areas in a chronic unpredictable mild stress (CUMS) paradigm. In the acute studies, alarin produced a dose-related reduction in the immobility duration in tail suspension test (TST) in mice. In the open-field test, intracerebroventricular (i.c.v.) injection of alarin (1.0 nmol) did not impair locomotion or motor coordination in the treated mice. In the CUMS paradigm, alarin administration (1.0 nmol, i.c.v.) significantly improved murine behaviors (FST and locomotor activity), which was associated with a decrease in corticotropin-releasing hormone (CRH) mRNA levels in the hypothalamus, as well as a decline in serum levels of CRH, adrenocorticotropic hormone (ACTH) and corticosterone (CORT), all of which are key hormones of the HPA axis. Furthermore, alarin upregulated BDNF mRNA levels in the prefrontal cortex and hippocampus. These findings suggest that alarin may potentiate the development of new antidepressants, which would be further secured with the identification of its receptor(s).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2014.04.009 | DOI Listing |
Eur J Histochem
October 2024
Department of Cardiology, Suqian Zhongwu Hospital, Suqian, Jiangsu.
Heart failure with preserved ejection fraction (HFpEF), a complex disease that is increasingly prevalent due to population aging, pose significant challenges in its treatment. The present study utilized the HFpEF rat model and H9C2 cells as research subjects to thoroughly investigate the potential mechanisms of alarin in protecting cardiac function in HFpEF. The study shows that under HFpEF conditions, oxidative stress significantly increases, leading to myocardial structural damage and dysfunction of calcium ion channels, which ultimately impairs diastolic function.
View Article and Find Full Text PDFJ Perinat Med
October 2024
Clinic of Obstetrics and Gynecology, Konya City Hospital, Konya, Türkiye.
Acta Neurobiol Exp (Wars)
March 2024
Karadeniz Technical University, Faculty of Medicine, Department of Biophysics, Trabzon, Turkey.
Alarin is a newly discovered neuropeptide that belongs to the galanin peptide family with a wide range of bioactivity in the nervous system. Its function in the brain's autonomic areas has been studied, and it has been reported that alarin is involved in the regulation of excitability in hypothalamic neurons. Its role in the regulation of excitability in the hippocampus, however, is unknown.
View Article and Find Full Text PDFBiomolecules
September 2023
Universaleye Clinic, Elazig 23040, Turkey.
Purpose: Acute central serous chorioretinopathy (ACSCR) is a condition characterized by decreased visual acuity, macular thickening, and edema under the retinal layer. Although the underlying mechanisms of the disease are not fully understood, oxidative stress is considered to be a critical risk factor. The aim of this study was to shed light on the pathophysiology of ACSCR by investigating the levels of circulating trimethylamine N-oxide (TMAO), phoenixin (PNX), alarin (ALA), and spexin (SPX) molecules in ACSCR patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!