β-Adrenoceptors differentially regulate vascular tone and angiogenesis of rat aorta via ERK1/2 and p38.

Vascul Pharmacol

Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain. Electronic address:

Published: January 2015

β-Adrenoceptors (β-ARs) modulate ERK1/2 and p38 in different cells, but little is known about the contribution of these signaling pathways to the function of β-ARs in vascular tissue. Immunoblotting analysis of rat aortic rings, primary endothelial (ECs) and smooth muscle cells (SMCs) isolated from aorta showed that β-AR stimulation with isoprenaline activated p38 in aortic rings and in both cultured cell types, whereas it had a dual effect on ERK1/2 phosphorylation, decreasing it in ECs while increasing it in SMCs. These effects were reversed by propranolol, which by itself increased p-ERK1/2 in ECs. Isoprenaline β-AR mediated vasodilation of aortic rings was potentiated by the ERK1/2 inhibitor, U0126, in the presence or absence of endothelium or L-NAME, whereas inhibition of p38 had no impact. Isoprenaline moderately decreased sprouting from aorta rings in the Matrigel angiogenesis assay; conversely propranolol not only prevented isoprenaline inhibition, but stimulated angiogenesis. ERK1/2 inhibition decreased angiogenesis, while a dramatic stimulation was observed by p38 blockade. Our results suggest that ERK1/2 activation after β-ARs stimulation in the smooth muscle hinders the vasodilator effect of isoprenaline, but in the endothelium β-ARs decreases ERK1/2 and increases p38 activity reducing therefore angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vph.2014.04.003DOI Listing

Publication Analysis

Top Keywords

aortic rings
12
erk1/2 p38
8
smooth muscle
8
erk1/2
7
p38
6
angiogenesis
5
isoprenaline
5
β-adrenoceptors differentially
4
differentially regulate
4
regulate vascular
4

Similar Publications

Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.

View Article and Find Full Text PDF

Evaluation of the Effects of Mulberry Leaf Extracts L. on Cardiovascular, Renal, and Platelet Function in Experimental Arterial Hypertension.

Nutrients

December 2024

Departamento Fisiología, Facultad Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30120 Murcia, Spain.

Introduction: Numerous epidemiological studies have demonstrated that consuming foods rich in polyphenols and flavonoids can have beneficial effects on various diseases, including arterial hypertension (HTN). Recent research from our laboratory has shown that certain flavonoids exhibit antihypertensive properties in several animal models of HTN. Our objective was to evaluate the effect of L.

View Article and Find Full Text PDF

: Following previous findings on high-salt (HS)-intake-related increase of oxidative stress, this study explored whether carnosine (CAR; β-alanyl-L-histidine), a reactive oxygen species (ROS) scavenger, enhanced antioxidative defence and vascular function following HS, potentially via the NRF2 or HIF-1α signalling pathway. : Sprague Dawley rats (64, 8-10 weeks old, both sexes) were divided into four groups (n = 6/group): CTRL (0.4% NaCl), HS (4% NaCl for 7 days), CTRL + CAR (0.

View Article and Find Full Text PDF

Background: Obesity is a risk factor for developing cardiovascular diseases (CVDs) by impairing normal vascular function. Natural products are gaining momentum in the clinical setting due to their high efficacy and low toxicity. extract (CFE) has been shown to control appetite and promote weight loss; however, its effect on vascular function remains poorly understood.

View Article and Find Full Text PDF

Vasculo-Protective Effects of Standardized Black Chokeberry Extracts in Mice Aorta.

Int J Mol Sci

December 2024

Department III Functional Sciences-Pathophysiology, Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timisoara, Romania.

Black chokeberry ( Elliot) represents a rich source of dietary polyphenols and other bioactive phytochemicals with pleiotropic beneficial cardiovascular effects. The present study was aimed at evaluating the ex vivo effects of two black chokeberry extracts (BChEs), obtained from either dry (DryAr) or frozen (FrozAr) berries, on oxidative stress and vascular function in mice aortic rings after incubation with angiotensin 2 (Ang 2), lipopolysaccharide (LPS) and glucose (GLUC) in order to mimic renin-angiotensin system activation, inflammation and hyperglycemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!