Cost-benefit analysis is a prerequisite for making good business decisions. In the business environment, companies intend to make profit from maximizing information utility of published data while having an obligation to protect individual privacy. In this paper, we quantify the trade-off between privacy and data utility in health data publishing in terms of monetary value. We propose an analytical cost model that can help health information custodians (HICs) make better decisions about sharing person-specific health data with other parties. We examine relevant cost factors associated with the value of anonymized data and the possible damage cost due to potential privacy breaches. Our model guides an HIC to find the optimal value of publishing health data and could be utilized for both perturbative and non-perturbative anonymization techniques. We show that our approach can identify the optimal value for different privacy models, including K-anonymity, LKC-privacy, and ∊-differential privacy, under various anonymization algorithms and privacy parameters through extensive experiments on real-life data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbi.2014.04.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!