Afferent neurons commonly exhibit a somatotopic arrangement in the central nervous system that organizes spatially discrete sensory input. We are interested in how that spatial input gets integrated into motor commands. With resources for screening genes and neural circuits, and given that the cells and ion channels that transduce tactile stimuli in Drosophila larvae are remarkably well-characterized, larval mechanosensation is an ideal system for investigating how specific behaviors emerge from localized sensory input. We observed that crawling larvae are more reactive to a 20mN tactile stimulus on the head than on the tail or abdomen. Behavioral responses that were evoked by the stimuli also depended on where the stimulus was delivered. Differences in relative sensitivity were observed in different genotypes, e.g., a null white mutant and hypomorphic smn mutant are significantly more reactive to tail touches than Canton-S larvae. Responses were inhibited by silencing chemical transmission in a combination of multidendritic and chordotonal neurons, but not by inhibiting any specific subset of neurons. Extracellular recordings from segmental nerves revealed that sensory-evoked responses exhibit spike-timing dependence at the neural circuit level. Tactile stimuli reduced endogenous firing frequency and increased bursting periods when applied during periods of motor activity. The same stimulus initiated bursts of activity when applied during inactive periods. Together, these data depict the spatial and temporal complexity of mechanosensation as it applies to action selection, and provide a foundation for addressing how neural circuits in the CNS adjust their activity to afferent input.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neures.2014.04.003 | DOI Listing |
Vitam Horm
January 2025
Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States. Electronic address:
The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland. Electronic address:
The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
: Tactile gnosis derives from the interplay between the hand's tactile input and the memory systems of the brain. It is the prerequisite for complex hand functions. Impaired sensation leads to profound disability.
View Article and Find Full Text PDFChildren (Basel)
December 2024
Global and Local Sustainability, Daemen University, 4380 Main Street, Amherst, NY 14226, USA.
Background/objectives: Static upright tasks, including standing unsupported (SU), eyes closed (SEC), feet together (SFT), tandem (TS), and single limb (SLS), are routinely examined in children and are included in many norm-referenced measures. Existing normative values for these standing tasks may not apply to contemporary children and have not been established across wide age ranges. The primary purpose of this study was to investigate developmental trajectories of and relationships between four static standing positions (SPs [SU, SFT, TS, SLS]) in children aged 2 through 13 years who are developing typically.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Psychology, Theoretical Cognitive Science Group, Philipps-Universität Marburg, Marburg, Germany.
Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!